WOODLINKS VILLAGE - STAGE 18 COLLINGWOOD DRIVE, COLLINGWOOD PARK FOR 'CANBERRA ESTATES CONSORTIUM NO. 36 PTY LTD'

DRAWING LIST

EARTHWORKS, ROADWORKS AND DRAINAGE						
22-0175-100	COVER PLAN					
22-0175-101	GENERAL NOTES					
22-0175-102	BULK EARTHWORKS LAYOUT PLAN					
22-0175-103	BULK EARTHWORKS TYPICAL SECTIONS					
22-0175-105	ROADWORKS AND DRAINAGE LAYOUT PLAN					
22-0175-106	SURVEY SETOUT AND KERB TYPES LAYOUT PLAN					
22-0175-107	ROAD 01 LONGITUDINAL SECTION					
22-0175-108	ROAD 01 CROSS SECTIONS SHEET 1 OF 2					
22-0175-109	ROAD 01 CROSS SECTIONS SHEET 2 OF 2					
22-0175-110	ELDER PARADE LONGITUDINAL SECTION					
22-0175-111	ELDER PARADE CROSS SECTIONS					
22-0175-112	LANE 01 AND FOREBAY DRIVEWAY LONGITUDINAL SECTION AND CROSS SECTIONS					
22-0175-113	INTERSECTION DETAILS LAYOUT PLAN SHEET 1 OF 2					
22-0175-114	INTERSECTION DETAILS LAYOUT PLAN SHEET 2 OF 2					
22-0175-117	SIGNS AND LINEMARKING LAYOUT PLAN					
22-0175-118	STORMWATER DRAINAGE CATCHMENT LAYOUT PLAN					
22-0175-119	STORMWATER DRAINAGE LONGITUDINAL SECTIONS					
22-0175-120	STORMWATER DRAINAGE LONGITUDINAL SECTIONS AND STRUCTURE DETAILS					
22-0175-121	STORMWATER DRAINAGE CALCULATIONS TABLE					
22-0175-123	SEDIMENT FOREBAY DRIVEWAY DETAILS AND LAYOUT PLAN					

SEWERAGE AND WATER RETICULATION

22-0175-300	SEWERAGE AND WATER RETICULATION COVER PLAN
22-0175-301	SEWERAGE AND WATER RETICULATION GENERAL NOTES
22-0175-302	SEWERAGE AND WATER RETICULATION LIVE WORKS DETAILS
22-0175-303	SEWERAGE LAYOUT PLAN
22-0175-304	SEWERAGE LONGITUDINAL SECTIONS SHEET 1 OF 2
22-0175-305	SEWERAGE LONGITUDINAL SECTIONS SHEET 2 OF 2
22-0175-306	WATER RETICULATION LAYOUT PLAN
22-0175-307	FIRE HYDRANT REACH LAYOUT PLAN

LOCALITY PLAN SCALE 1:4000 (A1) SCALE 1:8000 (A3)

PROJECT INFORMATION SUMMARY:

No. OF LOTS = 44

AREA OF SITE = 3.502ha

RP DESCRIPTION LOT 5007 ON SP317659

DATUM LEVEL AND LOCATION

P.M. 110122 RL 40.320 AHD

LOCAL AUTHORITY: IPSWICH CITY COUNCIL COUNCIL REFERENCE NUMBER: 4280/15/MAMC/B

NOTE:

 (\mathbb{N})

THESE DRAWINGS ARE TO BE READ IN CONJUNCTION WITH:

- VEGETATION MANAGEMENT PLAN
- LANDSCAPE ARCHITECT'S PLANS
- ELECTRICAL, COMMUNICATIONS AND GAS CONSULTANT'S PLANS
- SEDIMENT AND EROSION HAZARD ASSESSMENT
 SAFETY IN DESIGN REPORT
- SAFETY IN DESIGN REPORT
 STORMWATER MANAGEMENT PLAN REPORTS
- STORMWATER MANAGEMENT PLAN REPORTS
 FLOOD ASSESSMENT REPORT WOODLINKS ESTATE STAGE 9
 AND NORTHERN ELOW DATH
- AND NORTHERN FLOW PATH

AS-0	CONSTRUCTED	O CERTIFICATION
Signature:		Date: 04/04/25
For and on ha	DANIEL COLLINS	RPEQ No. 18631
		ional engineering & design ply itu

WOODLINKS

COVER	ΡI	ΔN
COVER	۲L	.AN

COLLINGWOOD DRIVE COLLINGWOOD PARK

22-0175

	3

GENERAL NOTES:

- THE CONTRACTOR SHALL SUPPLY ALL LABOR, MATERIALS, PLANT AND EQUIPMENT TO CONSTRUCT THE WORKS AS DOCUMENTED AND STRICTLY IN ACCORDANCE WITH THE RELEVANT AUTHORITY STANDARDS, SPECIFICATIONS AND REQUIREMENTS.
- 2. THE EXISTING SERVICES THAT ARE SHOWN ON THE DRAWINGS ARE PROVIDED FOR INFORMATION PURPOSES ONLY. NO RESPONSIBILITY IS TAKEN BY THE SUPERINTENDENT OR THE PRINCIPAL FOR INFORMATION THAT HAS BEEN SUPPLIED BY OTHERS, OR ANY EXISTING SERVICES THAT MAY BE PRESENT NOT SHOWN ON THE DRAWINGS. THE CONTRACTOR SHALL VERIFY THE POSITION OF ANY UNDERGROUND SERVICES WITHIN THE AREAS OF WORKS AND SHALL BE RESPONSIBLE FOR MAKING GOOD ANY DAMAGE THERETO. ANY ALTERATION WORKS TO SERVICES WILL BE CARRIED OUT ONLY BY THE SERVICE OWNER AUTHORITY UNLESS APPROVED OTHERWISE.
- 3. ALL CONSTRUCTION ACTIVITIES UNDERTAKEN SHALL COMPLY WITH CURRENT WORKPLACE HEALTH AND SAFETY REQUIREMENTS AND LEGISLATION.
- 4. PRIOR TO COMMENCING WORK, THE CONTRACTOR IS RESPONSIBLE FOR OBTAINING ALL RELEVANT LOCAL AUTHORITY PERMITS.
- 5. THE CONTRACTOR SHALL NOT COMMENCE THE DEMOLITION OF ANY EXISTING BUILDINGS AND/OR STRUCTURES WITHOUT APPROVAL FROM THE SUPERINTENDENT.
- 6. THE CONTRACTOR SHALL APPLY INDUSTRY BEST PRACTICE SO WORKS SHALL NOT DISTURB OR AFFECT NEARBY RESIDENTS EITHER BY DUST, NOISE, FLOODING OR DISCONNECTION OF SERVICES. CONTRACTOR TO ENSURE THAT ACCESS AND SERVICES TO EXISTING PROPERTIES ARE AVAILABLE AT ALL TIMES.
- 7. THE CONTRACTOR SHALL VERIFY LEVELS OF EXISTING SERVICE CROSSINGS AND CONNECTION POINTS PRIOR TO COMMENCEMENT OF WORKS AND NOTIFY SUPERINTENDENT OF ANY DISCREPANCIES BETWEEN ACTUAL AND PROPOSED DESIGN LEVELS.
- 8. THESE ENGINEERING DRAWINGS ARE TO BE READ IN CONJUNCTION WITH THE APPROVED VEGETATION MANAGEMENT PLAN, WHERE APPLICABLE. WHEN IN DOUBT, ALL EXISTING TREES ARE TO REMAIN UNLESS DIRECTED OTHERWISE.
- HOLD POINT: ONCE THE BASE OF MANHOLES, INSPECTION PITS, GULLIES AND FIELD INLETS FOR STORMWATER DRAINAGE AND SEWER RETICULATION HAVE BEEN POURED, CONSTRUCTION SHALL ONLY RE-COMMENCE ONCE THE SUPERINTENDENT AND/OR ENGINEER HAVE INSPECTED THE WORKS.
- 10. THE CONTRACTOR SHALL NOTE DURING THE COURSE OF THE WORKS WHEN JOINT INSPECTIONS WITH THE AUTHORITY AND THE SUPERINTENDENT ARE REQUIRED. THESE INCLUDE PRE-STARTS, SUBGRADES, PRE-SEALS, CLEARING, AND OTHER SUCH INSPECTIONS AS NOMINATED IN THE APPROVAL AND THE SPECIFICATIONS. THE CONTRACTOR SHALL ENSURE NO WORKS PROCEED PAST THE INSPECTION POINT UNTIL THE JOINT INSPECTION HAS BEEN SUCCESSFULLY COMPLETED.
- 11. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROVIDING A SAFE MOVEMENT OF TRAFFIC AND THE PROTECTION OF PERSON AND PROPERTY THROUGH AND AROUND THE SITE. THE CONTRACTOR IS RESPONSIBLE FOR ALL TRAFFIC MANAGEMENT INCLUDING THE DESIGN, CONSTRUCTION, MAINTENANCE AND REMOVAL OF TEMPORARY ROADWAYS, DETOURS, SIGNS, LIGHTS AND BARRIER AS REQUIRED STRICTLY IN ACCORDANCE WITH THE RELEVANT AUTHORITY REQUIREMENTS.

BULK EARTHWORKS NOTES

- 1. NOTWITHSTANDING THE EXTENTS OF CUTTING AND FILLING SHOWN ON DRAWINGS, THE SUPERINTENDENT RESERVES THE RIGHT TO ADJUST THE FINISHED SURFACE LEVELS AND EARTHWORKS EXTENTS THROUGH WRITTEN DIRECTION.
- 2. THE CONTRACTOR SHALL UNDERTAKE ALL CLEARING USING INDUSTRY BEST PRACTICE INCLUDING CONSIDERATION OF FAUNA RELOCATION.
- 3. THE CONTRACTOR SHALL UNDERTAKE ALL EARTHWORKS IN ACCORDANCE WITH AS3798-2007 AND LOCAL AUTHORITY REQUIREMENTS. LEVEL 1 SUPERVISION IS REQUIRED.
- 4. THE CONTRACTOR SHALL CONSIDER LOADS GENERATED BY THE EARTHWORKS OPERATIONS SO AS TO AVOID DAMAGE TO ALL PIPES, SERVICES AND STRUCTURES.
- 5. THE EARTHWORKS DRAWINGS ARE TO BE READ IN CONJUNCTION WITH THE PROJECT'S SEDIMENT AND EROSION CONTROL PLAN, WHERE APPLICABLE.
- 6. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE PLANNING, DESIGN, CERTIFICATION, IMPLEMENTATION AND MAINTENANCE OF AN EROSION AND SEDIMENT CONTROL PLAN THAT IS COMPLIANT WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION (IECA) GUIDELINE 'BEST PRACTICE EROSION AND SEDIMENT CONTROL' AND RELEVANT COUNCIL POLICIES.
- 7. ALLOTMENT FINISHED SURFACE LEVELS, SHOWN ON THE LAYOUT PLAN, INDICATE THE FINISHED SURFACE LEVEL <u>AFTER</u> TOPSOIL PLACEMENT.

ROADWORKS AND DRAINAGE NOTES

- 1. ALL WORKS SHALL BE IN ACCORDANCE WITH THE RELEVANT AUTHORITY'S STANDARD DRAWINGS, METHODS AND SPECIFICATIONS.
- 2. NOTWITHSTANDING THE EXTENTS OF CUTTING AND FILLING SHOWN ON DRAWINGS, THE SUPERINTENDENT RESERVES THE RIGHT TO ADJUST THE FINISHED SURFACE LEVELS AND EARTHWORKS EXTENTS THROUGH WRITTEN DIRECTION.
- 3. NEW CONSTRUCTION SHALL BE NEATLY JOINED TO EXISTING FORMATION. WHERE REQUIRED, THE EXISTING FORMATION SHALL BE SAW CUT IN ACCORDANCE WITH IPWEAQ STD DRG RS-170. LEVELS AND GRADIENTS AT CONNECTIONS WITH EXISTING WORKS MAY BE VARIED AS REQUIRED TO ACHIEVE A SMOOTH CONNECTION.
- 4. THE CONTRACTOR SHALL UNDERTAKE ALL EARTHWORKS IN ACCORDANCE WITH AS3798-2007 AND LOCAL AUTHORITY REQUIREMENTS. LEVEL 1 SUPERVISION IS REQUIRED.
- 5. THE CONTRACTOR SHALL SUPPLY THE SUPERINTENDENT WITH THE SUBGRADE TEST RESULTS NECESSARY FOR ALL PAVEMENT DESIGN.
- 6. THE CONTRACTOR SHALL ENSURE A MINIMUM OF 75mm TOPSOIL TO ALL VERGE AND BATTER AREAS (AND STABILISATION AS ORDERED)
- 7. THE CONTRACTOR SHALL INSTALL ALL FOOTPATH AND PRAM RAMPS IN COMPLIANCE WITH THE AUTHORITY'S STANDARD DRAWINGS. PRAM RAMPS ARE TO BE LOCATED CLEAR OF DRAINAGE GULLY PITS AND FUTURE DRIVEWAY POSITIONS INDICATED ON THE LAYOUT PLANS.
- 8. THE CONTRACTOR SHALL INSTALL SUBSOIL DRAINS UNDER ALL KERBS AS REQUIRED BY THE LOCAL AUTHORITY'S STANDARDS.
- 9. THE CONTRACTOR SHALL ENSURE THAT ALL RETAINING WALL SUBSOIL DRAINS ARE TO CONNECT TO EITHER KERB ADAPTORS OR STORMWATER DRAINAGE STRUCTURES. CONTRACTOR TO DEMONSTRATE TO SUPERINTENDENT THAT SUITABLE CONNECTIONS HAVE BEEN PROVIDED FOR ALL WALLS.
- 10. ALL STORMWATER DRAINAGE MATERIALS, BEDDING, JOINTING AND STEP IRON REQUIREMENTS SHALL BE IN ACCORDANCE WITH THE RELEVANT AUTHORITIES STANDARD DRAWINGS, METHODS AND SPECIFICATIONS.
- 11. THE STORMWATER PIPE CLASSES HAVE BEEN DESIGNED FOR SERVICE LOADS ONLY. THE CONTRACTOR SHALL ASSESS THE SUITABILITY OF MACHINERY USED ON SITE AND THE ANTICIPATED CONSTRUCTION LOADS, AND UPGRADE THE PIPE CLASSES IF NECESSARY IN ACCORDANCE WITH AS3725-2007.
- 12. THE TERM D_{50} DOCUMENTED ON THE DRAWINGS, IN RELATION TO ROCK ARMORING, CORRESPONDS TO THE REQUIRED MEDIAN DIAMETER OF THE PLACED ROCKS. THE ROCKS USED SHALL NOT VARY IN SIZE BY +/- 30% OF THE PROPOSED D_{50} SIZE.

ROOFWATER NOTES

- THE GEOMETRIC CENTRE SHALL BE TAKEN AS THE SETOUT POINT FOR ALL STRUCTURES, UNLESS DETAILED OTHERWISE.
- 2. ROOFWATER ALIGNMENT, COVER, MATERIALS, BEDDING, JOINTING AND STEP IRON REQUIREMENTS SHALL BE IN ACCORDANCE WITH THE RELEVANT AUTHORITY'S STANDARD DRAWINGS, METHODS AND SPECIFICATIONS.
- ALL PVC PIPES ARE TO BE MINIMUM CLASS SN8.
- 4. END CAPS SHALL BE INSTALLED ON ENDS OF ALL PIPES AND STUBS.
- 5. WHERE ROOFWATER PIPES ARE ALIGNED BEHIND PROPOSED RETAINING WALLS, THE CONTRACTOR IS TO REFER TO THE SPECIFIC PROJECT DESIGN DETAILS AND CONFIRM CLEARANCES WITH THE SUPERINTENDENT PRIOR TO LAYING OF THE PIPES.
- PROPERTY CONNECTIONS SHALL BE 1000 UNLESS SHOWN OTHERWISE. THE CONTRACTOR SHALL EXTEND CONNECTIONS A MINIMUM OF 1.0m BEYOND ADJACENT SEWER LINES, WHERE APPLICABLE.
- 7. IN INSTANCES WHERE REAR ALLOTMENT DRAINAGE IS NOT PROVIDED, THE CONTRACTOR SHALL INSTALL A ROOFWATER CONNECTION TO EACH PROPERTY BY ONE OF THE FOLLOWING METHODS, AS SHOWN ON THE LAYOUT PLAN:
 - TWO ROOFWATER KERB ADAPTOR 500mm FROM THE DOWNSTREAM BOUNDARY (UNLESS SHOWN ON A DIFFERENT ALIGNMENT). WHERE THERE IS A CONCRETE FOOTPATH, A ROOFWATER PIPE SHALL BE INSTALLED FROM THE PROPERTY BOUNDARY CONNECTED TO THE KERB ADAPTOR AT 1.25% MINIMUM GRADE IN ACCORDANCE WITH COUNCIL'S STANDARDS.
 - ONE 150Ø ROOFWATER PIPE CONNECTED TO PROPOSED STORMWATER GULLY PIT OR MANHOLE AT MINIMUM 1.0% GRADE WITH 1.0m COVER.

RE	/ DATE	DESIGN	DRAWN	REVISION DETAILS	DRAWN	STATUS			SCALE	CLIENT					
2	17.05.24	CL	CL	ISSUED FOR CONSTRUCTION											
3	04.04.25	CL	BP	AS CONSTRUCTED			AS CONSTRUCTED			CANBERRA ESTATES					
_						APPROVED		l V onners i		CONSORTIUM NO. 36 PTY LTC					
	_				DESIGN		APPROVED	DATE							
_	_						4.04.25								
	_									ASSOCIATED CONSULTANT					
	_														SAUNDERS HAVILL GROUP
	_									PH: 1300 123 744					
		I				1				1 11. 1000 120 / 44					

Signature: Date: 04/04/25 DANIEL COLLINS RPEQ No. 18631	AS-C	ONSTRUCTED	D CERTIFICATION
DANIEL COLLINS RPEQ No. 18631	Signature:	S	Date: 04/04/25
For and on behalf of Colliers International engineering & design pty ltd	For and on beh	DANIEL COLLINS half of Colliers Internat	RPEQ No. 18631 ional engineering & design pty Itd

AWING TITLE

GENERAL NOTES

COLLINGWOOD DRIVE
COLLINGWOOD PARK

22-0175

AME	DRAWING TITLE			
WOODLINKS	ROADWORKS AND DRAINAGE LAYOUT PLAN			
COLLINGWOOD DRIVE COLLINGWOOD PARK	PROJECT No. 22-0175	drawing No.	REVISION	

PROPOSED AREA OF WORKS PROPOSED NEW ROAD PAVEMENT PROPOSED CONCRETE DRIVEWAY PROPOSED ROAD CONTROL LINE PROPOSED MOUNTABLE KERB AND CHANNEL 'TYPE M1' PROPOSED BARRIER KERB AND CHANNEL 'TYPE B1' PROPOSED KERB TRANSITION LOCATION PROPOSED CONCRETE PATH AND PRAM RAMP INDICATIVE DRIVEWAY LOCATION ZERO LOT BOUNDARY PROPOSED FOOTPATH SETOUT NODE

CONTROL LINE SETOUT - ROAD 01

FASTING	NORTHING	BEARING	RAD/SPIRAL	A LENGTH	DEEL ANGLE
6439.001	4107.010	20952101.07		/ELINOTTI	DEI LIANOLL
0430.091	4127.010	32 53 01.07			
6490.865	4208.645	32°53'01.07"			
6497.271	4218.554		R = 11.800	18.535	90°00'00.00"
6507.181	4212.147	122°53'01.07"			
6551.605	4183.426	122°53'01.07"			
6561.514	4177.019		R = 11.800	18.535	90°00'00.00"
6555.108	4167.110	212°53'01.07"			
6550.275	4159.636	212°53'01.07"			
6543.869	4149.727		R = -11.800	18.535	90°00'00.00"
6553.778	4143.320	122°53'01.07"			
6592.744	4118.128	122°53'01.07"			
6602.653	4111.721		R = 11.800	18.535	90°00'00.00"
6596.246	4101.812	212°53'01.07"			
6568.359	4058.678	212°53'01.07"			
6565.843	4054.785		R = 14.000	8.953	36°38'26.88"
6561.500	4053.164	249°31'27.95"			
6551.176	4049.309	249°31'27.95"			

CONTROL LINE SETOUT - ELDER PARADE

EASTING	NORTHING	BEARING	RAD/SPIRAL	A.LENGTH	DEFL.ANGLE
6247.052	4195.251	85°00'00.00"			
6261.247	4196.493	85°00'00.00"			
6262.963	4196.643		R = 14.000	3.427	14°01'24.00"
6264.663	4196.373	99°01'24.00"			
6340.881	4184.270	99°01'24.00"			
6352.358	4182.447		R = 55.000	22.904	23°51'37.07"
6362.116	4176.138	122°53'01.07"			
6543.918	4058.599	122°53'01.07"			
6554.924	4051.484		R = 18.000	22.656	72°06'58.93"
6551.532	4038.824	195°00'00.00"			
6547.475	4023.684	195°00'00.00"			

CONTROL LINE SETOUT - DRIVEWAY 02

EASTING	NORTHING	BEARING	RAD/SPIRAL	A.LENGTH	DEFL.ANGLE
6548.388	4153.495	271°17'16.09"			
6543.747	4153.599	271°17'16.09"			
6541.484	4153.650		R = 8.000	4.412	31°35'44.98"
6539.584	4154.879	302°53'01.07"			
6534.667	4158.057	302°53'01.07"			

CONTROL LINE SETOUT - LANE 01

EASTING	NORTHING	BEARING	RAD/SPIRAL	A.LENGTH	DEFL.ANGLE
6549.225	4148.855	248°11'01.97"			
6540.577	4145.394	248°11'01.97"			
6537.623	4144.211		R = -10.000	6.161	35°18'00.91"
6535.896	4141.539	212°53'01.07"			
6527.999	4129.324	212°53'01.07"			

N	٨	M	c	

DRAWING TITLE

WOODLINKS

SURVEY SETOUT AND KERB TYPES LAYOUT PLAN

	22-0175	106	4
COLLINGWOOD PARK		100	-

	010	PAVEMENT			ASSUMED PAVE	IENT DETAILS (SUB	JECT TO CBF	R TESTING)			
	<u>0 250 0</u> 1.1.39.25	APPROVAL		ROAD ROA	D CLASSIFICATION DESIGN ESA	S ASSUMED CBR SURFA	CING BASE	SUB BASE	LOWER SUB BA	SE TOTAL DEPTH	
	- NOI 000 R			ROAD 01	CCESS STREET 1.0 x 10 ⁵	3 35m	ım 125mm	100mm	160mm	420mm	
	INTERSECT CH0.C		<u>NOTE:</u>	THIS PAVEMENT DESIC SUPPLY THE SUPERIN	GN IS PRELIMINARY ONLY BASED ITENDENT WITH SUBGRADE TEST	ON AN ASSUMED CBR. THE RESULTS NECESSARY FOR	CONTRACTOR SH FINAL PAVEMENT	ALL DESIGN			
	EXISTING SUF	RFACE				AS CONSTRUCTED	PAVEMENT	DETAILS			
		INTERSECTION - DWY 02 INTERSECTION - LAN CH202.578 RL32.818	<u>4E 01</u> 5	COAD 02 2010 2010 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 20	CHAINAGE	ESA	DESIGNED CBR	SURFACING BA	ASE COURSE SU CLASS 1 C	B BASE ASS 2 TOTAL DE	EPTH
		.31,718 210,437 RL	INTERSECTION - FOREBAY DRIVEWAY CH257.156 RL31.107	PYRITE CRES	SCENT CH10.00 - CH20.00	1.0x10 ⁵ ACCESS STREET	10	35mm	125mm 1	00mm 260mr	m
		115.456 RU	3 RL 30.996	PYRITE CRES	SCENT CH20.00 - CH90.00	1.0x10 ⁵ ACCESS STREET	14	35mm	125mm 1	00mm 260mr	m
		풍 C DESIGN SURFACE	o CH 266.71	PYRITE CRES	SCENT CH90.00 - CH160.00	1.0x10 ⁵ ACCESS STREET	10	35mm	125mm 1	00mm 260mr	m
			F	PYRITE CRES	SCENT CH160.00 - CH250.00	1.0x10 ⁵ ACCESS STREET	12	35mm	125mm 1	00mm 260mr	m
				PYRITE CRES	SCENT CH250.00 - CH330.00	1.0x10 ⁵ ACCESS STREET	11	35mm	125mm 1	00mm 260mr	m
				PYRITE CRES	SCENT CH330.00 - CH350.878	1.0x10 ⁵ ACCESS STREET	15	35mm	125mm 1	00mm 260mr	m
	IP CH 0.000 RL 39.250 IP CH 0.000 RL 39.250 IP CH 12 643 RL 33.062 0.01 2 J J IP CH 127 345 RL 37.062 0.01 2 J J IP CH 27.345 RL 37.062	907 FC 30.0 (R571.7) 1.320%	9065 1.237 1.237 1.237 1.237 1.237 1.237 1.237 1.237 1.237 1.237 1.237 1.237 1.2577 1.2577 1.2577 1.2577 1.2577 1.2577 1.2577 1.2577 1.	8 0.0 1 CH 350 854 RL 33 285 1 CH 350 854 RL 33 285							
DATUM RL 14.0											
CUT (-) / FILL	0.386 0.172 0.176 0.176 0.091 -0.012 -0.012 -1.941 -1.941 -1.945 -1.945 -1.538	0.652 0.627 0.618 0.0148 0.0154 0.0154 0.0240 0.256 0.2560 0.256 0.2560 0.2560 0.2560 0.25	1.012 1.011 1.011 1.012 1.005 1.005 1.005 1.005 1.005 1.005 1.050 1.1325 1.325 1.325 1.325 1.325 1.325 1.325 1.333 1.336 1.345	0.428 0.270 -0.327 -0.026							
LHS LIP LEVEL	1 87 87 97 87 97 85 47 97 97 97 97 97 97 97 97 97 95 90 98 98 98 98 98 98 99 99 99 99 99 99 99	31.960 31.903 31.871 31.612 31.612 31.652 31.652 31.652 31.652 32.64 32.647 32.654 32.751 32.	30.984 30.978 30.978 30.944 30.944 30.944 30.950 30.950 30.951 31.056 31.276 31.056 31.276 31.276 31.276 31.276 31.276 31.276 31.276 31.276 31.276 31.276 31.276 31.276 31.276 31.276 31.276 31.276 31.276 31.276 31.276 31.276	#							
RHS LIP LEVEL	37.857 37.854 37.056 36.328 35.900 35.900 34.240 34.240 32.706	31.954 31.755 31.755 31.586 31.586 31.685 31.685 31.685 31.685 31.685 32.694 32.755 32.677 32.677 32.677 32.677 32.677 32.677 32.677 32.677 32.667 32.756 32.677 32.756 32.756 32.756 32.756 32.756 32.756 32.756 32.7757 32.7757 32.7757 32.7757 32.77575 32.775757 32.775757575757575757	30.979 30.972 30.975 30.936 30.915 30.915 30.915 31.047 31.271 32.201 32								
DESIGN SURFACE	32.550 33.550 33.557 33.547 33.547 37.137 36.440 37.137 36.440 37.137 36.440 37.137 36.440 37.137 36.440 37.137 36.642 37.137 36.665 37.137 37.966 37.137 37	32.066 31.927 31.718 31.718 31.718 31.786 31.786 31.992 32.256 32.277 32.277 32.277 32.276 32.277 32.276 32.277 32.276 32.277 32.276 32.277 32.276 32.277 32.276 32.277 32.276 32.277 32.276 32.277 32.2777 32.7777 32.7777 32.77777 32.7777777777	31.090 31.061 31.065 31.065 31.066 31.066 31.069 31.069 31.059 31.165 31.165 31.165 31.157 31.157 31.152 31.152 31.728 32.742 32	32.958 33.058 33.139							
EXISTING SURFACE	3864 3864 3864 38466 33466 37984 37984 37984 37984 37984 37984 38380 37987 38380 37987 38380 37987 38380 37987 37987 37984 37386 37376 37376 37376 37376 373776 373776 3737776 37377777777	31.438 31.382 31.366 31.666 31.666 31.666 31.666 31.666 31.666 31.666 31.666 31.666 31.666 31.7866 31.7866 31.7866 31.7866 31.7866 31.7866 31.7866 31.7866 31.7866	30.079 30.073 30.073 30.049 30.049 22.9322 22.9322 22.941 30.177 30.167 30.167 30.167 30.167 30.167 30.167 30.304 30.304 30.304 30.304 30.304 30.305 30.3070	32.511 32.694 33.385 33.411 33.411							
CHAINAGES	0000 0000 112.043 112.043 112.043 112.043 212.000 27.345 40.000 60.000 80.000	95.502 97.200 100.000 115.456 115.735 110.000 123.002 140.000 188.635 187.171 188.635 189.000 205.089 210.497 210.497 2240.608 2440.608 2440.608 24	257.884 286.197 286.100 286.1006 286.11005 286.11005 286.11005 282.544 300.000 307.554 330.965 3300.965 330.965 330.965 3300.965 3300.965 300.965 300.965 3000	340.000 340.661 343.161 350.878 350.878			A Signat		CTED CERTI	EICATION :: 04/04/25	
HORIZONTAL CURVES		R11.800 R11.800 R-11.800	R11.800 R14.000				For and c	DANIEL COLI on behalf of Colliers	LINS RPEQ No. International engine	ring & design pty ltd	
# REFER INTERSECTION DETAILS PLA	AN FOR KERB RETURN LONGITUDINAL SECTIONS	ROAD 01									

DJECT NAME IGN D REVISION DETAILS Colliers ISSUED FOR CONSTRUCTION ROAD 01 UPDATED (CH0.00 - 40.00) 1:1000 10 1:2000 CL CL CL BP AS CONSTRUCTED **CANBERRA ESTATES** 10 20 30 40 50 A1 A3 CONSORTIUM NO. 36 PTY LTD DATE 4.04.25 1:100 2 1 1:200 DESIGN 4 A1 A3 VERTICAL SAUNDERS HAVILL GROUP PH: 1300 123 744

ROAD 01 LONGITUDINAL SECTION

COLLINGWOOD DRIVE COLLINGWOOD PARK

22-0175

107

25	Colliers	1:100 1:200	1	0	1	2	3	4	5	A1 A3	CAN	1BI RTI
-											ASSOCIATED CONSU	JND PI

CANBERRA ESTATES CONSORTIUM NO. 36 PTY LTD

AS-CONSTRUCTED CERTIFICATION

Signature: Date: 04/04/25 DANIEL COLLINS RPEQ No. 18631 For and on behalf of Colliers International engineering & design pty Itd

W)I IN	IKS
	200		ii vu

ROAD 01 CROSS SECTIONS SHEET 2 OF 2

COLLINGWOOD DRIVE COLLINGWOOD PARK

22-0175

109

ASSUMED PAVEMENT DET

				(00-0-0.				-
ROAD	ROAD CLASSIFICATION	DESIGN ESAs	ASSUMED CBR	SURFACING	BASE	SUB BASE	LOWER SUB BASE	TOTAL DEPTH
ELDER PARADE	ACCESS STREET	1.0 x 10 ⁵	3	35mm	125mm	100mm	160mm	420mm

NOTE: THIS PAVEMENT DESIGN IS PRELIMINARY ONLY BASED ON AN ASSUMED CBR. THE CONTRACTOR SHALL SUPPLY THE SUPERINTENDENT WITH SUBGRADE TEST RESULTS NECESSARY FOR FINAL PAVEMENT DESIGN-

AS CONSTRUCTED PAVEMENT DETAILS

		AC CONCINCIEN					
ROAD	CHAINAGE	ESA	DESIGNED CBR	SURFACING	BASE COURSE CLASS 1	SUB BASE CLASS 2	TOTAL DEPTH
ELDER PARADE	CH175.744 - CH260.00	1.0x10 ⁵ ACCESS STREET	11	35mm	125mm	100mm	260mm
ELDER PARADE	CH260.00 - CH320.00	1.0x10 ⁵ ACCESS STREET	13	35mm	125mm	100mm	260mm
ELDER PARADE	CH320.00 - CH372.573	1.0x10 ⁵ ACCESS STREET	15	35mm	125mm	100mm	260mm

		[CONNECTION INTO EXISTING ELDER P.	CH1					CH208.224 RL39.251		HP CH 230 428 RI 39 424				¢	EXI	STIN		SURFAC SIGN SL	E	ACE				4 - ROAD 01				XISTING ELDER PARADE	CH372.573	EXI ST
						IP CH 186.262 RL 39.052) S IP CH 249.732 RL 39.623	50.0										3 6 IP CH 345.495 RL 32.920	50.00 (a1.2)			V IP CH 372 573 RL 32.758 CONNECTION INTO E	9	
					-	VC . (R10	25.0)41.6))) >	-				T		(Rb					-												
DATUM RL 17.0		<u>~</u>	~	3.300	0%	VC (R10	25.0		-	0.	9009			\sim		<				-7.	000%	\				>	<	-0.59	9%	*		
DATUM RL 17.0 CUT (-) / FILL	_{	0:000	<u>~</u>	3.300	-0.001	VC (R10 990.0	941.6				0.140	0.102	0.340	0.593	0.738			1.010	1.017	-7.	1.111	1.115	1.160	0.392	0.056	-0.070	<	-0.464	9%	-0.006	000.0-	
DATUM RL 17.0 CUT (-) / FILL LHS LIP LEVEL		0.000		3.300	-0.001	38.715 0.066 A 0.066	38.865 0.076	39.009 0.090	30.043 0.000		39.240 0.140 }	30.787 0.187	39.312 0.340	39.240 0.593	39.018 0.738	38.621 0 001		37.932 1.010	37.762 1.017 37.393 0.992	-7.	35.993 1.111 00 35.977 1.111 00	34.593 1.115	34.558 1.160	0.392	0.056	-0200-		-0.464	32.191 -0.00 00.00 00.00 00.00	32.663 -0.006	TING	
DATUM RL 17.0 CUT (-) / FILL LHS LIP LEVEL RHS LIP LEVEL		0.000	EXISTING	3.300	-0.001	38.715 38.715 0.066 X 0.13	38.865 38.865 0.076	39.009 39.009 0.090 0.090			39.244 39.240 0.140 / 60	39.200 39.200 U.102 30.287 0.187	39.312 39.312 0.340	39.240 39.240 0.593	39.018 39.018 0.738	38.621 38.621 0.001		37.932 37.932 1.010	37.762 37.762 1.017 37.393 37.393 0.992	-7.	35.993 35.993 1.111 000 35.977 35.977 1.111 000	34.593 34.593 1.115	34.558 34.558 1.160	33.717 0.392	33.436 0.056	33.208 # -0.070 V		32.858 -0.464 -0. 32.702	99% 0000 0000 0000 0000	32.658 32.663 -0.006	EXISTING	
DATUM RL 17.0 CUT (-) / FILL LHS LIP LEVEL RHS LIP LEVEL DESIGN SURFACE		38.185	EXISTING	33.300	38.695	38.827 38.715 38.715 0.066 X 38.715 0.066	38.977 38.865 38.865 0.076 1.107	39.120 39.009 39.009 0.090 0 0 0 0 0 0 0 0 0 0 0 0 0 0	33.102 33.043 0.002 33.043 0.002 33.043 0.002 33.043 30.042 30.047 0.083 30.047 0.083 30.047 0.083 30.047 0.083		39.356 39.244 39.240 0.140 { 8	30.300 33.200 33.200 0.102 30.327 0.187	39.424 39.312 39.312 0.340	39.352 39.240 39.240 0.593 	39.130 39.018 39.018 0.738	38 733 38 621 38 621 0 001		38.044 37.932 37.932 1.010	37.873 37.762 37.762 1.017 37.505 37.393 37.393 0.992	-7.	36.104 35.993 35.993 1.111 00 36.089 35.977 35.977 1.111 00 36.089 35.977 35.977 1.111	34.704 34.593 34.593 1.115	34.670 34.558 34.558 1.160	33.828 33.717 0.392	33.548 33.436 0.056	33.320 33.208 # -0.070 V		32.970 32.858 -0.464 -0.464 -0.4700 -0.470 -0.470 -0.470 -0.470 -0.4700 -0		32.770 32.658 32.663 -0.006	EXISTING	
DATUM RL 17.0 CUT (-) / FILL LHS LIP LEVEL RHS LIP LEVEL DESIGN SURFACE EXISTING SURFACE		38.185 38.185 0.000 5	EXISTING	38.640 38.640	38.696 38.695	<u>38.760</u> <u>38.827</u> <u>38.715</u> <u>38.715</u> <u>0.066</u> } 1 3 5 5 3 5 3 5 3 5 3 5 5 3 5 3 5	38.901 38.977 38.865 38.865 0.076 141	39.030 39.120 39.009 39.009 0.090) (1)	33.100 33.103 33.033 33.049 0.003 33.049 30.03		39.216 39.356 39.244 39.240 0.140 / 8	39.219 39.300 39.200 39.200 U.102	39.084 39.424 39.312 39.312 0.340 2	38.758 39.352 39.240 39.240 0.593	38.391 39.130 39.018 39.018 0.738 7 3	37 742 38 733 38 621 38 621 0 001		37.033 38.044 37.932 37.932 1.010	36.857 37.873 37.762 37.762 1.017 36.513 37.505 37.393 37.393 0.992	-7.	34.978 36.104 35.993 35.993 1.111 00 34.978 36.089 35.977 35.977 1.111 00	33.589 34.704 34.593 34.593 1.115	33.510 34.670 34.558 34.558 1.160	33.437 33.828 33.717 0.392	33.492 33.548 33.436 0.056	33.390 33.320 33.208 # -0.070 v		33.434 32.970 32.858 -0.464 -		32.1/16 32.1/10 32.658 32.6663 -0.006	32.738 32.738 EXISTING -0.000	
DATUM RL 17.0 CUT (-) / FILL LHS LIP LEVEL RHS LIP LEVEL DESIGN SURFACE EXISTING SURFACE CHAINAGES		160.000 38.185 38.185 0.000 5	EXISTING	173.762 38.640 38.640 0.000 8.640	175.474 38.696 38.695	180.000 38.760 38.827 38.715 38.715 0.066 7 38.75	186.262 38.901 38.977 38.865 38.865 0.076 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	194./24 39.030 39.120 39.009 39.009 0.090) = -	190.702 33.100 33.103 33.033 33.049 0.000		220.000 39.216 39.356 39.244 39.240 0.140 } §	222.1 24 39.219 39.300 39.200 39.200 0.102 1	730.428 39.084 39.424 39.312 39.312 0.340 2	240.000 38.758 39.352 39.240 39.240 0.593	249.732 38.391 39.130 39.018 39.018 0.738 7	360,000 37.740 38,621 38,621 0 001		272.224 37.033 38.044 37.932 37.932 1.010	274.732 36.857 37.873 37.762 37.762 1.017 286.000 36.513 37.505 37.393 37.393 0.992		300.000 34.993 36.104 35.993 35.993 1.111 8 300.224 34.978 36.089 35.977 35.977 1.111 8	220.000 33.589 34.704 34.593 34.593 1.115	320.495 33.510 34.670 34.558 34.558 1.160	334.242 33.437 33.828 33.717 0.392	340.000 33.492 33.548 33.436 0.056 0.056	345,495 33.390 33.320 33.208 ## -0.070 v		356.898 33.434 32.970 32.858 -0.464 5 360.000 33.406 32.003 32.700 20.707 50.70 503 55		3/0.495 32.1/6 32.1/0 32.658 32.663 -0.006	3/2:3/3 32./38 32./38 EXISTING -0.000	

REFER INTERSECTION DETAILS PLAN FOR KERB RETURN LONGITUDINAL SECTIONS

ELDER PARADE

PAVEMENT DESIGN SUBJECT TO COUNCIL APPROVAL FOLLOWING INSITU CBR TESTING.

SAUNDERS HAVILL GROUP PH: 1300 123 744

AS-CONSTRUCTED CERTIFICATION Signature: ______ Date: 04/04/25

DANIEL COLLINS RPEQ No. 18631 For and on behalf of Colliers International engineering & design pty Itd

WOODLINKS

JECT NAM

ELDER PARADE LONGITUDINAL

	SECTION	
ECT No.	DRAWING No.	REVISION

COLLINGWOOD DRIVE
COLLINGWOOD PARK

22-0175

110

											INSET 'C' SCALE 1:125	
R	V DATE	DESIGN	DRAWN	REVISION DETAILS	DRAWN	STATUS			SCALE		CLIENT	PROJECT NAME
	17.05.24 04.04.25	CL CL	CL BP	ISSUED FOR CONSTRUCTION AS CONSTRUCTED	-	AS CONSTRUCTED		Colliers	1:125 2.5 0 1:250	2.5 5 A1	CANBERRA ESTATES CONSORTIUM NO. 36 PTY LTD	
					DESIGN	APPROVED DAI 4.C	^{ате} .04.25		1:500 10 5 0 1:1000	10 20 A1	ASSOCIATED CONSULTANT SAUNDERS HAVILL GROUP PH: 1300 123 744	-

AS-CONSTRUCTED CERTIFICATION

Signature: Date: 04/04/25 DANIEL COLLINS RPEQ No. 18631 For and on behalf of Colliers International engineering & design pty Itd

WOODLINKS

SIGNS AND LINEMARKING LAYOUT PLAN

COLLINGWOOD DRIVE COLLINGWOOD PARK

22-0175

117

REV	DATE	DESIGN	DRAWN	REVISION DETAILS	DRAWN	STATUS			SCALE	CLIENT	PROJECT NAME
2	17.05.24	CL	CL	ISSUED FOR CONSTRUCTION							
4	28.06.24	CL	BP	LOT 520, 519 AMENDED. ROAD 01 and ELDER PARADE AMENDED.		AS CONSTRUCTED				I CANBERRA ESTATES	
5	04.04.25	CL	BP	AS CONSTRUCTED					4 500 40 5 0 40 00 14		
								I V AIHArs	1:500 10 5 0 10 20 A1	I CONSORTIUM NO. 36 PTY LTD	
					DESIGN	APPROVED	DATE		1:1000 A3		
					DEGIGIT		4 04 25				
										ASSOCIATED CONSULTANT	
										SAUNDERS HAVILL GROUP	
										DU 1200 122 744	
										PTI: 1300 123 744	

LEGEND

CATCHMENT NAME CATCHMENT BOUNDARY EXISTING STAGE CATCHMENT BOUNDARY PROPOSED STORMWATER DRAINAGE PIPE - D - EXISTING STORMWATER DRAINAGE PIPE \rightarrow \longrightarrow PROPOSED SWALE DRAIN $- \rightarrow - \rightarrow - \rightarrow -$ EXISTING SWALE DRAIN ----- FINISHED SURFACE CONTOUR CATCHMENT FLOW DIRECTION ARROW

STORMWATER DRAINAGE PIPE STORMWATER MANHOLE STORMWATER HEADWALL - STORMWATER PIT ----- AS CONSTRUCTED CONTOUR

САТСНМЕ	NT TABLE		
RUNOFF COEFF MINOR	RUNOFF COEFF MAJOR	IMPERVIOUS CATCHMENT AREA MINOR (ha)	IMPERVIOUS CATCHMENT AREA MAJOR (ha)
0.72	1	0.127	0.177
0.72	1	0.13	0.181
0.73	1	0.06	0.081
0.73	1	0.078	0.064
0.73	1	0.017	0.015
0.73	1	0.082	0.107
0.72	1	0.11	0.152
0.73	1	0.117	0.096
0.72	1	0.281	0.39
0.73	1	0.074	0.102
0.73	1	0.015	0.024
0.73	1	0.019	0.036
0.72	1	0.2	0.277
0.72	1	0.046	0.064
0.73	1	0.236	0.334
0.69	1	0.029	0.042
0.69	1	0.029	0.042
0.69	1	0.029	0.042
0.69	1	0.021	0.03
0.69	1	0.021	0.03
0.69	1	0.027	0.039

WOODLINKS

STORMWATER DRAINAGE CATCHMENT LAYOUT PLAN

COLLINGWOOD DRIVE COLLINGWOOD PARK

22-0175

118

STRUCTURE NAME	G10/1	G9/1	G8/1	G7/1		G5/1	G4/1	G3/1	G2/1	G1/1	114/N		G4/2	G3/2	G2/2	G112	G1/1 G1/1		G1/3	G1/1	F1/4	G3/1
STRUCTURE DESCRIPTION	STD TYPE A GULLY L.I.L; 2.4m Lintel; TYPE M K&C	STD TYPE A GULLY L.I.L; 2.4m Lintel; TYPE M K&C	STD TYPE A GULLY L.I.L; 2.4m Lintel; TYPE M K&C	STD TYPE A GULLY (SAG) L.I.L; 2.4m Lintel; TYPE M K&C ON 12000 MH		STD TYPE A GULLY L.I.L; 2.4m Lintel; TYPE M K&C ON 12000 MH	STD TYPE A GULLY L.I.L; 2.4m Lintel; TYPE M K&C	ON 12000 MH STD TYPE A GULLY	L.I.L; 2.4m Lintel; TYPE M K&C ON 12000 MH STD TYPE A GULLY	L.I.L; 2.4m Lintel; TYPE M K&C ON 12000 MH STD TYPE A GULLY (SAG)	L.I.L; 2.4m Lintel; TYPE M K&C ON 12000 MH		STD TYPE A GULLY	L.i.L, Z.HII LING, TITE M NAU STD TYPE A GULLY	L.I.L; 2.4m Lintel; TYPE M K&C STD TYPE A GULLY	L.I.L; 2.4m Lintel; TYPE M K&C STD TYPE A GIILLY	L.I.L; 2.4m Lintel; TYPE M K&C STD TYPE A GULLY (SAG)	L.I.L; 2.4m Lintel; TYPE M K&C ON 12000 MH	STD TYPE A GULLY (SAG) L.I.L; 2.4m Lintel; TYPE M K&C	STD TYPE A GULLY (SAG) L.I.L, 2.4m Lintel; TYPE M K&C ON 12000 MH	600×000 GULLY	WITH INVERTED GRATED LIU STD TYPE A GUILLY
STORMWATER STRUCTURE NOTE: STANDARD ROUND MANHOLES LESS THAN 3.0m DEEP: CONSTRUCT IN ACCORDANCE WITH THE LOCAL AUTHORITY STANDARDS. STANDARD ROUND MANHOLES 3.0m > 5.3m DEEP: CONSTRUCT IN ACCORDANCE WITH TMR STD DRAWINGS 1307 AND 1308. STANDARD ROUND MANHOLES GREATER THAN 5.3m DEEP: SHALL BE STRUCTURALLY DESIGNED (CERTIFIED) AND CONSTRUCTED BY CONTRACTOR ON A CASE BY CASE BASIS. ROUND EXTENDED (900mm MAX) MANHOLES: CONSTRUCT IN ACCORDANCE WITH COLLIERS INTERNATIONAL STD DRAWINGS S-101 & S-102. RECTANGULAR STRUCTURALLY DESIGNED (CERTIFIED) AND CONSTRUCTED BY CONTRACTOR ON A CASE BY CASE BASIS.		DIVIEO SEWER LINE CLR 0.388			Q2 HGL							FOREB RL. 27.	- BAY 82			- EXISTING SURFACE		ROPOSED URFACE				CLR 1 334
PIPE SIZE (mm) PIPE CLASS PIPE GRADE (%) PIPE SLOPE (1 in X) FULL PIPE VELOCITY (m/s) PART FULL VELOCITY (m/s)		75 3 1% 8% 17 - 2 24 36 47	375 - 3 - 5.41% 0 5.52% - 18.42 - 18.48 2 0.73 - 2.90 -	375 3 .45% .40% 21.86 0.89 1.14	525 3 0.38% -0.40%- 249.42 265.48 0.80 1.33	<u> </u>	25 3 25% 20% 2.60 6.25 81 19	525 3 0.26% 0.30% 327.93 390.44 0.92 1.23	525 3 0.25% 0.30% 332.01 392.55 0.98 1.23	<u>- 600</u> 3 <u>2.95%</u> 32.55 33.89 <u>- 0.97</u> 3.18	600 3 0.61% - <u>0.56%</u> 164.69 1.53 1.85		-	375 3 5.35% 	375 3 4.03% 4.29% 23.32 24.83 0.80 2.71	<u>375</u> <u>2.54%</u> <u>-2.63%</u> <u>37.98</u> <u>39.42</u> <u>0.83</u> 2.30	<u>375</u> <u>3</u> <u>5.42%</u> <u>5.79%</u> <u>17.26</u> <u>18.46</u> <u>0.87</u> <u>3.09</u>	-	8 - 10 	375 3 .93% .00% 11.20 0.53 3.27	-	<u>375</u> <u>4.85%</u> <u>4.99%</u> <u>20.62</u> <u>20.64</u> <u>0.14</u> 1.73
DATUM RL H.G.L IN PIPE & W.S.E IN STRUCTURE	33.582 33.516 61 33.516 61	33.079 33.084 33.007	30.569 30.584 30.476	30.409 30.420 30.335		30.259 30.276 30.187	30.166 30.185 30.080	30.048 30.066	29.963 29.884 29.901	29.784 28.984 29.019	28.551 28.551	28.551	32.928	31.861	31.787 30.988 31.001	30.919 29.940 29.940	29.871 28.984 28.984 29.019	28.701	0.71 29.539 29.539	28.984 29.019 28.701	32.185	32.178 0.66 31.048 30.066
PIPE FLOW (Cumecs)	0.0	40	0.081 0).099	0.174	0.1	175	0.199	0.212	0.273	0.432			0.067	0.088	0.092	0.096		0	.059		0.016
PIPE CAPACITY AT GRADE (Cumecs)	0.4	36	0.412 0).111	0.272	0.2	236	0.238	0.236	1.077	0.461			0.405	0.363	0.285	0.422		0	.555		0.392
DEPTH TO INVERT	1.299 1.28	1.51 <u>1.520</u> <u>1.540</u> 1.58	1.50 1.55 1.55	1.64 1.64		2.61 2.574 2.594 2.64	2.87 2.834 2.854	2.895 3.11 3.105	3.125 3.125 2.752 2.752	2.827 2.81 2.57 2.57	2.642 2.642 0.93	0.940 0.930 0.93	1 245	1.35 1.35 1.45 1.372	1.405 1.49 1.43 1.435	1.555 1.51 1.458	1.52 1.52 2.36 2.36	2.642 2.64	1.51 1.51	2.37 2.387 2.642 2.64		1.809 1.77 1.69 1.69
INVERT LEVEL OF DRAIN	-33.372 33.38	32.84 <u>32.819</u> 32.799 32.779	30.25 30.25 30.203 30.203	30.13 30.14 29.991 29.97		29.74 -29.746 -29.726 -29.71	29.67 29.677 29.657	29.645 29.60 29.604	29.584 29.585 29.53 29.519	29.444 29.45 28.31 28.31	28.240 28.240 28.11	28.120 28.120 28.11	22 50	32.54 31.57 31.602	31.569 31.53 30.73 30.73	-30.697 30.65 29.64	29.643 29.60 28.52 28.52	28.240 28.24	-29.363 29.37	28.51 -28.465 -28.240 -28.240 -28.24		32.089 32.10 31.02
DESIGN SURFACE LEVEL	34.66 	34.35 34.339	31.75 -31.710	31.61 -31.574		32.35 -32.320	32.54 	32.71 32.709	32.26 32.274	30.88 30.88	50.04	2000	<mark>33.89</mark> 33.873	33.02 32.974	32.16 32.152	31.12	30.88 30.88 859		30.88 	30.88 	33.87 33.898	32.71
SETOUT COORDINATES	E 6471.043 N 4170.619	E 6466.497 N 4178.321	E 6493.597 N 4216.314	E 6509.036 N 4215.706		E 6559 209 N 4180.821	E 6550.360 N 4167.134	E 6554.053	N 4150.151 E 6564.795	N 4131.434 E 6600.102	N 4115.976	N 4134.564	E 6538.979 N 4057 020	E 6556.901	N 4056.284 E 6575.592	N 4063.032 E 6607.157	N 4095.854	N 4115.976	E 6592.510 N 4111.174	E 6600.102 N 4115.976	E 6534.785	N 4139.821
RUNNING CHAINAGE	0000 8.9	81 ⁷⁷⁶ -	46.56 46.667 2:9 2:5 -1	5.53 69. 5.451 12	61.06 -61.108-	132.171	695 298-69 298-69	17.57 67 	21.59 21.580 21.580 21.580	38.63 38.542 v.	21.41 21.349	170.172	0.000	18.14 266 17.937 12	19.86 8. 19.872 6	39.81 &	19.94 20.337		0.000	9.63 86. .982 ®	0.000	22.29 &
LINE			1	I		1	I						L			2	1	_		3	L	4

	_	_								_
REV	DATE	DESIGN	DRAWN	REVISION DETAILS	DRAWN	STATUS		SCALE	CLIENT	PROJE
2	17.05.24	CL	CL	ISSUED FOR CONSTRUCTION						
3	04.04.25	CL	BP	AS CONSTRUCTED		AS CONSTRUCTED		1:1000 10 0 10 20 30 40 50 A1	I CANBERRA ESTATES	
								1:2000 A3		
							I V AIHArs	HORIZONTAL	I CONSORTIUM NO. 36 PTY LTD	
					DESIGN	APPROVED DATE				
					DEGIGIT	4 04 25		1:100 2 1 0 2 4 A1		
								1:200 A3	ASSOCIATED CONSULTANT	-
								VERTICAL	SAUNDERS HAVILL GROUP	
									DU- 4000 400 744	
									PH: 1300 123 744	

G1/1 - STANDARD 1200mm MANHOLE UNDER GULLY 1:20 (A1) 1:40 (A3)

_						-			-			
REV	DATE	DESIGN	DRAWN	REVISION DETAILS	DRAWN	STATUS			SCALE	10 0 10 00 10 50 11	CLIENT	PROJECT NAME
2	17.05.24	CL	CL	ISSUED FOR CONSTRUCTION					1:1000	10 0 10 20 30 40 50 A1		
3	23.06.24	CL	CL	LINE 6 UPDATED			AS CONSTRUCTED		1:2000	A3	I CANBERRA ESTATES	
3	04.04.25	CL	BP	AS CONSTRUCTED						HURIZUNTAL		
								L	1.100	2 1 0 2 4 41	I CONSORTIUM NO. 36 PTY LTD	
					DESIGN	APPROVED	DATE		1.100	2 1 0 2 4 AI		
					DEGIGIT		4 04 25		1:200	A3		
							101120			VERTICAL	ASSOCIATED CONSULTANT	-
									1:20	0.2 0 0.2 0.4 0.6 0.8 1 A1	SAUNDERS HAVILL GROUP	
									1.10		DU 4000 400 744	
						1			1:40	A3	PH: 1300 123 744	

STRUCTURE SETOUT REFERENCE POINT

STRUCTURE TYPE	НС	DRIZONTAL	VERTICAL
MANHOLE		€ MAIN SHAFT	FINISHED SURFACE LEVEL
GULLY PIT		INTERSECTION OF • PIT AND KERB • INVERT LNE # (INCLUDING MANHOLES UNDER GULLIES)	KERB INVERT LEVEL
HEADWALL		INTERSECTION OF HEADWALL FACE & PIPE CENTRE LINE	TOP OF HEADWALL

NOTE: WITHIN GULLY PIT CHAMBER, CONTRACTOR TO ENSURE STORMWATER PIPES ARE OFFSET AS REQUIRED SO THAT PIPES ENTER WHOLLY WITHIN A SIDE WALL

WOODLINKS

STORMWATER DRAINAGE LONGITUDINAL SECTIONS AND STRUCTURE DETAILS

COLLINGWOOD DRIVE COLLINGWOOD PARK

22-0175

120

LOCATION TIME SUBCATCHMENT RUNOFF																	NI																					0000								DECIC		<u> </u>						
1						7 0		0	SUBCA			12	12		1 1	r 10	17	10			22	22	24	25 2	ic l	27	-		20				2 2	1 25	2		27	20	20				44 45		47	48 40		1	52	DESIG		-5		
1	2	3	4	5	0 1			9	10	11		Σ(CxA)	13	· .	14 1	5 10) 1/	Wf	19 Z dø V	σ 21	22	23	09	25 2	.o	27	5(0	20 ΓχΔ)	29 Ot (0m 0s	. 0	2 3	5 54 I S	+ 35	3	V	3/ T	30	- 59 V	40 4 /2g K	1 4 1 h	2 43 II K.	44 43 h. Kw	9 40 / hw	47 Sf	48 49 hf		51	52		54	35 5	0 57	- 20
DESIGN ARI	STRUCTURE No.	DRAIN SECTION	SUB-CATCHMENTS CONTRIBUTING	SURFACE CONDITIONS (LAND USE)	SLOPE OF CATCHMENT SUB-CATCHMENT	TIME OF CONCENTRATION		COEFFICIENT OF RUNOFF	SUB-CATCHMENT AREA	EQUIVALENT AREA		SUM OF CONTRIBUTING EQUIVALENT AREAS	SUB-CATCHMENT DISCHARGE		FLOW PAST PREVIOUS GULLIES FLOW IN K&C	(INCLUDING BYPASS) ROAD GRADE AT INLET	K - K WIDTH	FLOW WIDTH	FLOW DEPTH AT INVERT	dg xVg	INLET NUMBER	INLET TYPE	FLOW INTO INLET	BYPASS FLOW	CKI I CAL IIME OF CONC.	- RAINFALL INTENSITY	TOTAL CONTRIBUTING	EQUIVALENT AREA	MAJOR TOTAL FLOW	MAJOR SURFACE FLOW CAPACITY			PIPE GRADE	PIPE/BOX DIMENSIONS		FLOW VELOCITY	TIME OF FLOW IN REACH	Ku METHOD	Ku CHART	VELOCITY HEAD		LAT. HEADLOSS COEEFFICIENT	LAT. PIPE STRUCTURE HEADLOSS	CHANGE IN W.S.E.	FRICTION SLOPE	PIPE FRICTION HEADLOSS	VELOCITY	OBVERT LEVELS	DRAIN SECTION HGL	U/S HGL	LATERAL HGL	WSE CLIMATER CLIMATER	SURFACE OF K&L INVENT LEVLL	STRUCTURE No.
Yrs VINOR					% m	From Intensity Chart MINOR	Norw /hr	MINOR	На	9×10 MINOR Ha	9 × 10 MAJOR	E Σ11 Σ11 MAJOR	(8 × 12)/360 (8 ×	0 (8 × 12)/360 MAJOR	525 3/s m ³		m	m		61 × 02 /s m ² /s		Refer Legend	From Charts	m ³ /s n	NIN N	Norvy nm/hr	Σ12 (U/S) MINOR	Ha I	(27 × 28)/360	m ³ /s m ³ /s	NONIW s m ³	MAJOR	m %	mm		32/Area of Sect.	33/(36 × 60)			3 (36 x 36)/2g FROM QUDM VOL	5005	FROM QUDM VOL 2	E FROM QUDM	m	FROM SECT. 14.5.7 A.R.R. VOL 11987			s/n m	s/n	s/0	m	mr	mm	
2 10	0 G10/1	G10/1 to	0 1		2.5	8 114	251	0.72 1	0.177	0.127	0.177 0	0.127 0.177	7 0.04	0.123	0.	04 8.3	3 8	1.338 0	.054 1.4	45 hs Table	G10/1	AL2D	0.04		8 114	251	0.127	0.177 0.	.123 2	2.784 0.24	9 0.04	0.088 8.	944 6.1	.8 375	0.	.36	0.41407 Mi	Ku,Kw - ssouri/Hare	G2	0.01 9.	7 0.0)7		0.066	4.89	0.479 0.077	7 2.465	33.747 33.19	4 33.516 3	3.079 33.58	82 3	3.582 34.	.671 1.08	19 G10/1
2 10	0 G9/1	G9/1 G9/1 to) 2		2.5	8 114	251	0.72 1	0.181	0.13	0.181	0.13 0.181	L 0.041	0.126	0.0	41 8.3	8 8	1.35 (.054 1.4	153 0.079	G9/1	AL2D	0.041	8	.07 113.7	250.25	0.258	0.358 0.	.249 2	2.784 0.24	9 0.081	0.177 46	.667 5.5	2 375	0.	.73	1.06546 Mi	<u>Charts</u> Ku,Kw - ssouri/Hare	G1/T6/T	0.03 2.6	54 0.0	07	2.83	3 0.077	5.22	2.493 0.113	3 2.896	33.174 30.59	B 33.007 3	80.569 33.08	84 3	3.084 34.	.339 1.2!	5 G9/1
2 10	0 G8/1	G8/1 G8/1 to	, ₃		2.5	3 139	321	0.73 1	0.082	0.06	0.082	0.06 0.082	2 0.023	0.073	0.0	23 1.6	6 8	1.387 (.064 0.6	92 0.045	G8/1	AL2D	0.023	8	.46 112.1	5 246.37	0.317	0.439 0.	.301 2	2.054 0.23	1 0.099	0.105 15	.451 0.4	4 375	0.	.89	0.28934 Mi	<u>Charts</u> Ku,Kw - ssouri/Hare	9 T6/T9	0.04 2.2	28 0.0	09	2.64	4 0.107	0.44	0.065 0.275	5 1.136	30.578 30.51	6 30.476 3	80.409 30.58	84 3	0.584 31	.71 1.17	26 G8/1
2 10	0 G7/1	G7/1 to	, ₅		2.5	5 128	287	0.73 1	0.054	0.039	0.054 0	0.039 0.054	0.014	0.043	0.0	14 0.1	4 8		0.01		G7/1	SAL2D-	0.014	10	.07 105.7	1 231.41	0.593	0.821 0.	.528		0.174	0.212 61	.108 0.4	4 525	0	D.8	1.27308 Mi	Charts Ku,Kw - ssouri/Hare	т6/т9	0.03 2.2	24 0.0	07	2.54	8 0.085	0.12	0.111 0.305	5 1.334	30.516 30.27	1 30.335 3	30.259 30.4	2	30.42 31.	.574 1.15	54 G7/1
2 10	0 G5/1	G5/1 to G4/1	, ₆		2.5	3 139	321	0.73 1	0.023	0.017	0.023 0	0.017 0.023	3 0.006	0.02	0.0	06 0.9	9 8	0.772	.046 0.4	48 0.021	G5/1	AL2D- MH1200	0.006	10	.58 103.6	7 227.34	0.609	0.844 0.	.533 1	1.586 0.09	0.175	0.217 16	.298 0.3	3 525	0.	.81	0.33535 Mi	<u>Charts</u> Ku,Kw - ssouri/Hare	т9/т10	0.03 2.1	14 0.0	07	2.6	7 0.089	0.13	0.024 0.337	7 1.194	30.251 30.20	2 30.187 3	80.166 30.23	76 3	0.276 32	.32 2.04	i4 G5/1
2 10	0 G4/1	G4/1 to	, ,		2.5	7 119	262	0.72 1	0.114	0.082	0.114 0	0.082 0.114	1 0.027	0.083	0.0	27 1.3	2 8	1.647 0	.063 0.6	59 0.041	G4/1	AL2D-	0.027	9	.24 109.0	5 238.86	0.656	0.909 0.	.603 1	1.831 0.09	1 0.199	0.282 17	.38 0.3	3 525	0.	.92	0.31486 Mi	Charts Ku,Kw - ssouri/Hare	т6	0.04 2	2 0.0	9	2.44	4 0.105	0.18	0.037 0.367	7 1.228	30.182 30.12	9 30.08 3	80.048 30.18	85 3	0.185 32.	.511 2.32	.6 G4/1
2 10	0 G3/1	G3/1 to	, 9		2.5	1 181	401	0.73 1						0.001		0.5	5 8	0.143 (.011 0.2	23 0.003	G3/1	AL2D-		9	.38 108.4	7 237.56	0.702	0.973 0.	.642 1	1.171 0.07	8 0.212	0.321 21	58 0.3	3 525	0.	.98	0.36701 Mi	<u>Charts</u> Ku,Kw - ssouri/Hare	тз	0.05 1.7	76 0.0	9	2.1	3 0.104	0.37	0.072 0.388	8 1.233	30.109 30.04	4 29.963 2	29.884 30.06	56 3	0.066 32.	.709 2.64	13 G3/1
2 10	0 G2/1	G2/1 to	9 16		2.5	6 123	274	0.72 1	0.076	i 0.055	0.076 0	0.055 0.076	5 0.019	0.058	0.0	19 4.6	4 8	1.074 0	.046 0.9	0.046	G2/1	AL2D- MH1200	0.019	9	.56 107.7	5 235.94	0.912	1.274 0.	.835 3	3.434 0.09	2 0.273	0.5 38	.542 3.0	600	0.	.97	0.66223 Mi	<u>Charts</u> Ku,Kw - ssouri/Hare	т6/т9	0.05 2.0	09 0.	1	2.4	6 0.117	2.08	0.892 0.206	ā 3.177	30.044 28.8	i 29.784 2	28.984 29.90	01 2	9.901 32.	.271 2.3	7 G2/1
2 10	0 G1/1	G1/1 to	22		2.5	5 128	287	0.73 1	0.053	0.039	0.053 0	0.039 0.053	3 0.014	0.042	0.0	14 0.1	7 8		0.01		G1/1	SAL2D-	0.014	10	.07 105.7	231.4	1.524	2.121 1.	.364		0.432	0.929 21	.349 0.5	6 600	1.	.53	0.23256 Mi	<u>Charts</u> Ku,Kw - ssouri/Hare	т6/т9	0.12 2.3	38 0.:	28	2.6	B 0.319	0.7	0.124 0.461	1 1.851	28.84 28.7	28.701 2	28.551 29.03	19 2	9.019 30.	.852 1.83	i3 G1/1
2 10	0 OUT1/1	0011/1			2.5											1				_	OUT1/1	HW																Charts			+						+			28.5	51 2	8.551 29	1.06	OUT1/1
2 10	0 G4/2	G4/2 to	, 1		2.5 1	10 106	232	0.72 1	0.39	0.281	0.39 0	0.281 0.39	0.083	0.251	0.0	83 6.1	L 8	1.95 0	.071 1.4	66 0.104	G4/2	AL2D	0.067	0.016	106	232	0.281	0.39 0.	.251 2	2.846 0.32	9 0.067	0.137 17	.937 5.3	3 375	0.	.61	0.49008 Mi	Ku,Kw - ssouri/Hare	G2	0.02 9.	7 0.	18		0.181	5.03	0.936 0.103	3 2.71	32.933 31.97	7 32.746 3	31.844 32.92	28 3	2.928 33.	.873 0.94	i5 G4/2
2 10	0 G3/2	G3/2 to G2/2	, ₂		2.5	3 139	321	0.73 1	0.102	0.074	0.102 0	0.074 0.102	2 0.029	0.091	0.0	29 5.8	6 8	1.384 0	.051 1.0	083 0.055	G3/2	AL2D	0.029	10	.15 105.4	230.8	0.355	0.492 0.	.315 2	2.789 0.34	1 0.088	0.18 19	.872 4.2	9 375	0	0.8	0.414 Mi	<u>Charts</u> Ku,Kw - ssouri/Hare	тз	0.03 1.7	77 0.0	06	2.2	8 0.074	4.02	0.834 0.126	à 2.71	31.944 31.09	2 31.787 3	80.988 31.86	51 3	1.861 32.	.974 1.11	.3 G3/2
2 10	0 G2/2	G2/2 to G1/2	, ₃		2.5	3 139	321	0.73 1	0.021	0.015	0.021	0.015 0.021	L 0.006	0.019	0.0	06 3.9	9 8	0.418	.034 0.8	38 0.028	G2/2	AL2D	0.006	10	.32 104.7	4 229.48	0.37	0.513 0.	.327 3	3.184 0.08	5 0.092	0.192 39	.273 2.6	3 375	0.	.83	0.78861 Mi	<u>Charts</u> Ku,Kw - ssouri/Hare	тз/т6	0.04 1.9	94 0.0)7	2.3	2 0.082	2.49	1.016 0.147	7 2.297	31.072 30.03	B 30.919 2	29.94 31.00	D1 3	1.001 32.	.152 1.15	.1 G2/2
2 10	0 G1/2	G1/2 to G2/1	° 4		2.5	5 128	287	0.73 1	0.026	i 0.019	0.026	0.019 0.026	5 0.007	0.021	0.0	107 1.74	4 8	0.659 0	.043 0.5	82 0.025	G1/2	AL2D	0.007	10	.64 103.4	3 226.86	0.39	0.539 0.	.34 2	2.103 0.19	8 0.096	0.204 20	.337 5.7	9 375	0.	.87	0.3896 Mi	<u>Charts</u> Ku,Kw - ssouri/Hare	тз/т6	0.04 1.7	79 0.0	07	2.19	9 0.085	4.36	0.944 0.122	2 3.094	30.018 28.84	29.871 2	28.984 29.9	55 2	9.955 31.	.091 1.1?	6 G1/2
2 10	0 G1/3	G1/3 to G2/1	° 1		2.5 1	10 106	232	0.72 1	0.277	0.2	0.277	0.2 0.277	7 0.059	0.179	0.0	59 0.9	8 8		.043		G1/3	SAL2D	0.059	:	106	232	0.2	0.277 0.	.179		0.059	0.214 8.	982 10	375	0.	.53	0.28245 Mi	Ku,Kw - ssouri/Hare	G2	0.01 9.	7 0.	14		0.14	6.18	0.609 0.082	3.266	29.738 28.84	29.539 2	28.984 29.6	8	29.68 30.	.831 1.15	1 G1/3
2 10	0 F1/4	F1/4 to G4/1	1		2.5	6 123	274	0.72 1	0.064	0.046	0.064 0	0.046 0.064	0.016	0.049	0.0	16 1					F1/4	FIELD	0.016		6 123	274	0.046	0.064 0.	.049 0	0.821 0.04	8 0.016	0.049 21	.862 4.9	9 375	0.	.14	2.60262 Mi	Ku,Kw - ssouri/Hare	G1	7	, 0.0	01		0.007	5.17	1.008 0.051	1 1.73	32.464 31.37	2 32.178 3	81.048 32.18	85 3	2.185 33.	.898 1.71	.3 F1/4
2 10	0 G1/5	G1/5 to G8/1	° 1		2.5 1	10 106	232	0.72 1	0.328	0.236	0.328	0.236 0.328	3 0.07	0.211	0.	07 0.6	3 8		.051		G1/5	900x600 SAL2D	0.07	:	106	232	0.236	0.328 0.	.211		0.07	0.047 8.	783 0.8	5 375	0.	.63	0.23235 Mi	Ku,Kw - ssouri/Hare	G2	0.02 9.	6 0.	19		0.195	1.09	0.07 0.172	1.411	30.704 30.62	9 30.521 3	80.426 30.7	16 3	0.716 31.	.566 0.89	6 G1/5
2 10	0 F6/6	F6/6 to F5/6	1		2.5	5 128	287	0.69 1	0.042	0.029	0.042	0.029 0.042	2 0.01	0.033	0.	01 1			.018		F6/6	SF2 600x900	0.01		5 128	287	0.029	0.042 0.	.033	0.03	3 0.01	0.03	14 5	150	0.	.58	0.4023 Mi	<u>Charts</u> Ku,Kw - ssouri/Hare	G1	0.02 6.	1 0.	11		0.106	5.23	0.656 0.052	1.906	37.738 37.03	8 37.682 3	86.949 37.78	88 3	7.788 38	.55 0.91	.2 F6/6
2 10	0 F5/6	F5/6 to F4/6	2		2.5	5 128	287	0.69 1	0.042	0.029	0.042	0.029 0.042	2 0.01	0.033	0.	01 1			.018		F5/6	SF2 600x900	0.01	5	.12 127.4	2 285.48	0.058	0.084 0.	.067	0.03	7 0.021	0.036	14 5	150	1.	16	0.20115 Mi	Ku,Kw - ssouri/Hare	т10	0.07 1.9	91 0.:	13	2.3	6 0.162	4.6	0.655 0.076	j 2.288	36.838 36.13	8 36.818 3	86.175 36.98	81 3	6.981 37	.95 1.11	.9 F5/6
2 10	0 F4/6	F4/6 to F3/6	3		2.5	5 128	287	0.69 1	0.042	0.029	0.042	0.029 0.042	2 0.01	0.033	0.	01 1			.018		F4/6	SF2 600x900	0.01	5	.23 126.8	3 283.97	0.087	0.126 0.	.099	0.06	3 0.031	0.038 :	10 5	150	1.	.73	0.09634 Mi	Ku,Kw - ssouri/Hare	T10	0.15 1.5	57 0.3	24	1.94	4 0.298	3.27	0.331 0.098	3 2.507	35.94 35.4	35.935 3	85.608 36.2	32 3	6.232 37	.05 0.9¢	;8 F4/6
2 10	0 F3/6	F3/6 to F2/6	4		2.5	5 128	287	0.69 1	0.03	0.021	0.03 0	0.021 0.03	0.007	0.024	0.0	107 1			.013		F3/6	SF2 600x900	0.007	5	32 126.4	2 282.88	0.108	0.156 0.	.123	0.08	4 0.038	0.034 :	LO 6.6	2 150	2.	.14	0.07788 Mi	Ku,Kw - ssouri/Hare	т10	0.23 1.4	18 0.:	35	1.8	1 0.422	4.41	0.441 0.103	\$ 2.922	35.24 34.57	8 35.262 3	34.821 35.68	84 3	5.684 36	.15 0.61	.6 F3/6
2 10	0 F2/6	F2/6 to F1/6	5		2.5	5 128	287	0.69 1	. 0.03	0.021	0.03 0	0.021 0.03	0.007	0.024	0.0	107 1			.013		F2/6	SF2 600x900	0.007	5	.4 126	283.32	0.128	0.185 0.	.146	0.11	2 0.045	0.052 3	.1 5	150	2.	.54	0.02034 Mi	Ku,Kw - ssouri/Hare	т1	0.33 0.6	58 0.:	23		0.226	6.26	0.193 0.15	2.542	34.558 34.40	3 34.596 3	34.402 34.82	21 3	4.821 35	.45 0.77	9 F2/6
2 10	0 F1/6	F1/6 to 1,	/6 6		2.5	5 128	287	0.69 1	0.039	0.027	0.039 0	0.027 0.039	0.01	0.031	0.	01 1			.017		F1/6	SF2 600x900	0.01	5	31 126.4	5 282.98	0.155	0.224 0.	.176	0.12	4 0.054	0.149 2	8.1 2.8	8 225	1.	37	0.34185 Mi	Ku,Kw - ssouri/Hare	т10	0.1 1.8	84 0.3	17	2.5	9 0.247	3.03	0.686 0.127	2.344	32.203 31.41	7 32.171 3	31.319 32.4	17 3	2.417 34	.75 2.48	3 F1/6
2 10	0 1/6	1/6 to G3,	6/1 6		2.5											1					1/6	RW PIT 550 DIA		5	.54 125.2	8 279.94	0.155	0.224 0.	.174		0.054	0.147 7.	721 2.9	1 375	0.	.49	0.26262 Mi	Ku,Kw - ssouri/Hare Charts	т1/тз	0.01 0.	7 0.0	01	1.0	3 0.012	3.7	0.135 0.108	2.053	31.417 31.19	2 31.21 3	30.925 31.22	22 3	1.222 32.	.662 1.4	1/6

R	EV I	DATE	DESIGN	DRAWN	REVISION DETAILS	DRAWN	STATUS			SCALE	CLIENT
	2 17	17.05.24	CL	CL	ISSUED FOR CONSTRUCTION						
	3 04	04.04.25	CL	BP	AS CONSTRUCTED		AS CONSTRUCTED		\frown 11.		CANBERRA ESTATES
	_					-					
	_										CONSORTIUM NO. 30 PTT LTD
-						DESIGN	APPROVED DAT	ATE OA OF			
						-	4.0	.04.25			ASSOCIATED CONSULTANT
											SAUNDERS HAVILL GROUP
											DU: 1200 122 744
											PH. 1300 123 744

AS-CONSTRUCTED CERTIFICATION
Signature: ______Date: 04/04/25 DANIEL COLLINS RPEQ No. 18631 For and on behalf of Colliers International engineering & design pty Itd

WOODLINKS

ROJECT NAME

STORMWATER DRAINAGE CALCULATIONS TABLE

COLLINGWOOD DRIVE COLLINGWOOD PARK

22-0175

TITLE

121

WOODLINKS VILLAGE STAGE 18 COLLINGWOOD DRIVE, COLLINGWOOD PARK FOR 'CANBERRA ESTATES CONSORTIUM NO.36 PTY LTD'

DRAWING LIST

SEWERAGE AND WATER RETICULATION

22-0175-300	SEWERAGE AND WATER RETICULATION COVER PLAN
22-0175-301	SEWERAGE AND WATER RETICULATION GENERAL NOTES
22-0175-302	SEWERAGE AND WATER RETICULATION LIVE WORKS DETAILS
22-0175-303	SEWERAGE LAYOUT PLAN
22-0175-304	SEWERAGE LONGITUDINAL SECTIONS SHEET 1 OF 2
22-0175-305	SEWERAGE LONGITUDINAL SECTIONS SHEET 2 OF 2
22-0175-306	WATER RETICULATION LAYOUT PLAN
22-0175-307	FIRE HYDRANT REACH LAYOUT PLAN

- Collins, hereby certify
- The information contained in this drawing / document is in (awings and design.
- The new water and sewerage works defined by this drawing have be onstructed in accordance with the SEQ code.
- is generally represents an accurate record of as-constructed works sponsibility for the information contained in this drawing / doc
- X

nature) RPEO No. 18631 Date: 04/04/2

LOCALITY PLAN SCALE 1:2500 (A1) SCALE 1:5000 (A3

Colliers

AS CONSTRUCTED

DATE 4.04.25

	URBAN UTILITIES	REF. NUMBER. :	22-PNT-6374()					
CANBERRA ESTATES CONSORTIUM NO. 36 PTY LTD	PROJECT NAME	DRAWING TITLE SEWERAGE AND WATER RETICULATION COVER PLAN							
SOCIATED CONSULTANT SAUNDERS HAVILL GROUP PH: 1300 123 744	COLLINGWOOD DRIVE COLLINGWOOD PARK	PROJECT No. 22-0175	DRAWING No.	REVISION 3					

STAG	GE		WOODLINKS VILLAGE STAGE 18								
			CANBERRA ESTATES CONSORTIUM NO.36 PTY LIMITED								
TILI	TIES APPLICATI	ON No.	23/06/2023								
TILI	TIES APPROVAL	DATE	22-PNT-63	3740							
LO	MENTS		44 LOT								
		ASSET REGISTE	ER - SEWERA	GE							
		MATE	ERIAL	LEN	GTH						
	DIAMETER	DESIGN	CONST	DESIGN	CONST						
	DN110	PE100 PN16	-	_91m_	112m						
	DN160	PE100 PN16	-	-598m -	581m						
	ASSI	ET REGISTER - W	ATER RETICU	JLATION							
		MATE	ERIAL	LEN	IGTH						
	DIVIMETER	DESIGN	CONST	DESIGN	CONST						
	DN125	PE100 PN16	-	-390m -	399m						
	DN180	PE100 PN16	-	-164m -	161m						
	DIAMETER	MATE	ERIAL	LENGTH							
	DIVINETER	DESIGN	CONST	DESIGN	CONST						
S	DN25	PE100 PN16	-	83m	94m						
	DN32	PE100 PN16	-	-18-	-						
	DN40	PE100 PN16	-	71m	67m						
		MATE	RIAL	NUM	IBER						
		DESIGN	CONST	DESIGN	CONST						
S	20Ø	PE100 PN16	-	42	42						
	25Ø	PE100 PN16	-	-	-						
	32Ø	PE100 PN16	-	-	-						

WATER SERVICE DETAILS											
SIZE	LOT NUMBERS										
DN25 PE100	LOTS 512 TO 520, 527 TO 545 AND 776 TO 779										
DN32 PE100	LOTS 521 TO 526 AND LOTS 546 TO 549										
DN40 PE100	ROAD CROSSING SERVICE										

GENERAL NOTES:

- THE CONTRACTOR SHALL SUPPLY ALL LABOR, MATERIALS, PLANT AND EQUIPMENT TO CONSTRUCT THE WORKS AS DOCUMENTED AND STRICTLY IN ACCORDANCE WITH THE RELEVANT AUTHORITY STANDARDS, SPECIFICATIONS AND REQUIREMENTS.
- EXISTING SERVICES RELEVANT TO THE PROJECT HAVE BEEN CONSIDERED THROUGHOUT DESIGN AND IS BASED ON SURVEY INFORMATION PROVIDED BY THE SURVEYOR AND THE CONTRACTOR. THE RPEQ WHO CERTIFIED THE DESIGN OR THE PRINCIPAL'S CONSTRUCTION RPEQ HAVE RELIED UPON THIS INFORMATION TO INFORM THE DESIGN. THE CONTRACTOR SHALL VERIFY THE POSITION OF ANY UNDERGROUND SERVICES WITHIN THE AREAS OF WORKS AND SHALL BE RESPONSIBLE FOR MAKING GOOD ANY DAMAGE THERETO. ANY ALTERATION WORKS TO SERVICES WILL BE CARRIED OUT ONLY BY THE SERVICE OWNER AUTHORITY UNLESS APPROVED OTHERWISE.
- ALL DESIGN AND CONSTRUCTION ACTIVITIES UNDERTAKEN SHALL COMPLY WITH CURRENT WORKPLACE HEALTH AND SAFETY REQUIREMENTS AND LEGISLATION.
- PRIOR TO COMMENCING WORK, THE CONTRACTOR IS RESPONSIBLE FOR OBTAINING ALL RELEVANT LOCAL AUTHORITY PERMITS.
- THE CONTRACTOR SHALL NOT COMMENCE THE DEMOLITION OF ANY EXISTING BUILDINGS AND/OR STRUCTURES WITHOUT APPROVAL FROM THE SUPERINTENDENT.
- THE CONTRACTOR SHALL APPLY INDUSTRY BEST PRACTICE SO WORKS SHALL NOT DISTURB OR AFFECT NEARBY RESIDENTS EITHER BY DUST, NOISE, FLOODING OR DISCONNECTION OF SERVICES. CONTRACTOR TO ENSURE THAT ACCESS AND SERVICES TO EXISTING PROPERTIES ARE AVAILABLE AT ALL TIMES
- 7. THE CERTIFICATION OF THIS DESIGN IS BASED ON SURVEY AND POTHOLE INFORMATION PROVIDED BY THE SURVEYOR AND/OR CONTRACTOR AT THE TIME OF DESIGN. PRIOR TO COMMENCEMENT OF WORKS, THE CONTRACTOR SHALL VERIFY LEVELS OF EXISTING SERVICE CROSSINGS AND CONNECTION POINTS AND NOTIFY THE RPEQ WHO CERTIFIED THE DESIGN OR THE PRINCIPAL'S CONSTRUCTION RPEQ OF ANY DISCREPANCIES BETWEEN ACTUAL AND PROPOSED DESIGN LEVELS. THE CERTIFICATION OF THIS DESIGN IS BASED ON SURVEY AND POTHOLE INFORMATION PROVIDED BY THE SURVEYOR AND CONTRACTOR AT THE TIME OF DESIGN
- HOLD POINT: ONCE THE BASE OF MANHOLES HAVE BEEN POURED, CONSTRUCTION SHALL ONLY RE-COMMENCE ONCE THE SUPERINTENDENT AND/OR ENGINEER HAVE INSPECTED THE WORKS.
- THE CONTRACTOR SHALL NOTE DURING THE COURSE OF THE WORKS WHEN JOINT INSPECTIONS WITH THE AUTHORITY AND THE SUPERINTENDENT ARE REQUIRED. THESE INCLUDE PRE-STARTS, SUBGRADES, PRE-SEALS, CLEARING, AND OTHER SUCH INSPECTIONS AS NOMINATED DURING THE PRE-START, IN THE APPROVAL AND THE SPECIFICATIONS. THE CONTRACTOR SHALL ENSURE NO WORKS PROCEED PAST THE INSPECTION POINT UNTIL THE JOINT INSPECTION HAS BEEN SUCCESSFULLY COMPLETED.
- 10. THE CONTRACTOR SHALL VERIFY LEVELS OF EXISTING SERVICE CROSSINGS AND CONNECTION POINTS PRIOR TO COMMENCEMENT OF WORKS AND NOTIFY THE RPEQ WHO CERTIFIED THE DESIGN OR THE PRINCIPAL'S CONSTRUCTION RPEQ OF ANY DISCREPANCIES BETWEEN ACTUAL AND PROPOSED DESIGN LEVELS. THE CERTIFICATION OF THIS DESIGN IS BASED ON SURVEY AND POTHOLE INFORMATION PROVIDED BY THE SURVEYOR AND CONTRACTOR AT THE TIME OF DESIGN.
- 11 THESE ENGINEERING DRAWINGS ARE TO BE READ IN CONJUNCTION WITH THE APPROVED VEGETATION MANAGEMENT PLAN, WHERE APPLICABLE. WHEN IN DOUBT, ALL EXISTING TREES ARE TO REMAIN UNLESS DIRECTED OTHERWISE.

ENVIRONMENTAL CONDITIONS

VEGETATION PROTECTION

- TREES LOCATED ALONG THE FOOTPATH SHALL BE, TRANSPLANTED PRIOR TO CONSTRUCTION, OR REPLACED IF DESTROYED.
- WHEN WORKING WITHIN 4m OF TREES, RUBBER OR HARDWOOD GIRDLES SHALL BE CONSTRUCTED WITH 1.8m BATTENS CLOSELY SPACED AND ARRANGED VERTICALLY FROM GROUND LEVEL. GIRDLES SHALL BE STRAPPED TO TREES PRIOR TO CONSTRUCTION AND REMAIN UNTIL COMPLETION.
- TREE ROOTS SHALL BE TUNNELED UNDER, RATHER THAN SEVERED. IF ROOTS ARE SEVERED THE DAMAGED AREA SHALL BE TREATED WITH A SUITABLE FUNGICIDE. CONTACT RELEVANT COUNCIL ARBORIST FOR FURTHER ADVICE.
- ANY TREE LOPPING REQUIRED SHOULD BE UNDERTAKEN BY AN APPROVED ARBORIST. D.

CREEK CROSSINGS

- SILTATION CONTROL MEASURES SHALL BE PLACED DOWNSTREAM OF ANY EXCAVATION WORK. A.
- APPROPRIATE SEDIMENT CONTROLS SHALL BE USED TO PREVENT SEDIMENT FROM ENTERING THE CREEK
- NO SOIL SHALL BE STOCKPILED WITHIN 5m OF THE CREEK.
- REHABILITATION
- PREDISTURBANCE SOIL PROFILES AND COMPACTION LEVELS SHALL BE REINSTATED. Α.
- PREDISTURBANCE VEGETATION PATTERNS SHALL BE RESTORED.

SEWERAGE NOTES

- ALL WORK AND MATERIALS SHALL BE IN ACCORDANCE WITH THE CURRENT WSAA GRAVITY SEWERAGE CODE OF AUSTRALIA SPECIFICATIONS AND STANDARD - SOUTH EAST QUEENSLAND SERVICE PROVIDERS EDITION.
- UNLESS SPECIFIED OTHERWISE ALL MATERIALS AND WORK SHALL COMPLY WITH THE RELEVANT AUSTRALIAN STANDARDS.
- THE DESIGN HAS BEEN UNDERTAKEN TO COMPLY WITH CURRENT URBAN UTILITIES STANDARDS AND 3 THE WSAA GRAVITY SEWERAGE CODE OF AUSTRALIA SPECIFICATIONS AND STANDARD - SOUTH EAST QUEENSLAND SERVICE PROVIDERS EDITION
- THE CONSTRUCTION OF THE SEWERAGE WORK SHOWN ON THIS DRAWING SHALL BE SUPERVISED BY AN ENGINEER WHO HAS RPEQ REGISTRATION. SEWERAGE WORKS NOT COMPLYING WITH THIS REQUIREMENT WILL NOT BE PERMITTED TO CONNECT INTO THE URBAN UTILITIES SEWERAGE SYSTEM
- ALL LIVE WORK SHALL BE UNDERTAKEN BY THE CONTRACTOR IN ACCORDANCE WITH A VALID WORKS PERMIT, UNDER THE SUPERVISION OF URBAN UTILITIES, AT THE DEVELOPER'S COST.
- ALL PIPES AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE "ACCEPTED PRODUCTS AND MATERIALS" LIST, UNLESS APPROVED BY URBAN UTILITIES.
- BENCH MARK AND LEVELS TO AHD.
- WHERE PIPES ARE LAID IN FILL, THE FILLING SHALL BE CARRIED OUT IN LAYERS NOT EXCEEDING 300mm (LOOSE) IN DEPTH AND SHALL BE COMPACTED UNTIL THE COMPACTION IS NOT LESS THAN 95% OF THE MATERIALS MAXIMUM COMPACTION WHEN TESTED IN ACCORDANCE WITH A.S.1289 (MODIFIED COMPACTION). TESTING SHALL BE CARRIED OUT AFTER EACH ALTERNATE LAYER. IN ALL SUCH CASES APPROVAL OF CONSTRUCTED SEWERS WILL NOT BE ISSUED BY URBAN UTILITIES UNLESS CERTIFICATES ARE PRODUCED CERTIFYING THAT THE REQUIRED COMPACTION HAS BEEN ACHIEVED.
- SEWERS SHALL BE DISUSED/ABANDONED IN ACCORDANCE WITH PROCEDURE SET OUT IN THE 9. GRAVITY SEWER CODE.
- CONSTRUCT EMBEDMENT AND TRENCHFILL TO SEQ-SEW-1200-1, 1200-2, 1201-1 TO 1205-1 AND COUNCIL STANDARDS FOR ROADWAYS.
- 11. CONSTRUCT BULKHEADS AND TRENCH STOPS TO SEQ-1206-1 AND TRENCH DRAINS TO SEQ-SEW-1207-1
- EACH ALLOTMENT SHALL BE SERVED BY A DN110 PE PROPERTY CONNECTION. FOR ALLOTMENTS OTHER THAN SINGLE RESIDENTIAL, A DN160 PE PROPERTY CONNECTION SHALL BE PROVIDED. PROPERTY CONNECTIONS SHALL BE LOCATED WITHIN THE PROPERTY AS SHOWN IN THE DRAWINGS AND SHALL EXTEND INTO THE PROPERTY A MINIMUM OF 300mm AND A MAXIMUM OF 750mm. REFER SEQ-SEW-1106-1 TO 1106-6.
- 13. CONSTRUCT MH'S TO SEQ-SEW-1301-1 TO 1301-5 (TYPE G), 1301-8 TO 1301-11 (TYPE F), 1301-14 TO 1301-25 (TYPE X), 1301-26 (TOP SLAB), 1301-27 (LADDERS), 1304-1, 1305-1, 1307-4 (STUB CUT IN), 1313-1 (CONNECTION)
- 14. CONSTRUCT MH INSERTIONS AND REPAIRS TO 1501-1 (JUNCTIONS) AND 1502-1 (INSET MS)
- CONSTRUCT MAINTENANCE SHAFTS AND TERMINAL ENTRY POINTS TO SEQ-SEW 1315-1, 1316-1 AND 1502-1 (INSERT MS).
- 16 INSTALL MH/MS TYPE B COVERS TO SEQ-SEW-1308-2 TO 1308-7
- 17. INSTALL MH/MS TYPE D COVERS TO SEQ-SEW-1308-8 TO 1308-11.
- 18. INSTALL DETECTABLE MARKER TAPE ON ALL SEWER MAINS AND PROPERTY CONNECTIONS. 19. THE UNDERSIDE OF ALL MAINTENANCE HOLE ASPROS MUST BE PE LINED AS PER STD DRG SEQ-SEW-1301-26
- 20. CONCRETE FOR MH CONSTRUCTION SHALL BE SPECIAL CLASS TO WSA PS-358 WITH REQUIREMENTS FOR CALCEREOUS AGGREGATE.

DETAILS OF PROPOSED SEWER SEQ CODE VARIATIONS

No.	SEQ CODE CLAUSE	DETAILS FOR PROPOSED VARIATION	REASONS OF PROPOSED VAR
1	5.4.5.2	SEWER MAIN LESS THAN MINIMUM VERTICAL CLEARANCE BETWEEN WATER MAIN OF 1.0m (PROPOSED MIN. 0.778m)	LINE 6 SEWER MAIN (BETWEEN STRUCTURE 2/EX2 AND HTP2/6) HAS BEEN DE INFRASTRUCTURE AND GRADE TO APPROPRIATE LEVEL WITH MINIMUM VER
2	5.6.5.4	LOTS 548, 546 - PROPERTY CONNECTION LEVEL IS DEEPER THAN 1.50m (PROPOSED 1.774m DEEP)	IN ACCORDANCE WITH CLAUSE 5.6.5.4 (b) LOTS 553, 557 WARRANT CONNECT SERVICED FROM ROAD RESERVE IN LIEU OF REAR LOT PRIVATE PROPERTY

						-			-		
REV	DATE	DESIGN	DRAWN	REVISION DETAILS	DRAWN	STATUS	1		SCALE	CLIENT	PROJECT N
2	20.06.24	CL	TR	ISSUED FOR CONSTRUCTION							
3	04.04.25	CL	BP	AS CONSTRUCTED		AS CONSTRUCTED		\frown 11.		CANBERRA ESTATES	
								\sim		CONSORTIUM NO. 36 PTY LTD	
					DESIGN	APPROVED DATE					
_						4.04.25					4
-											
										SAUNDERS HAVIEL GROUP	
										PH: 1300 123 744	

- WATER RETICULATION NOTES
- STANDARDS
- 3. URBAN UTILITIES STANDARDS
- URBAN UTILITIES.
- - ROADWAY CROSSINGS.
 - SEQ-WAT-1209-1 AND 1210-1

 - - URBAN UTILITIES.

 - REQUIREMENTS TO BE DOCUMENTED ON DRAWINGS.
 - FLANGE
 - A BLANK FLANGE DIRECTLY ON THE TEE.
 - 19. AC MAINS SHALL BE REPLACED COLLAR-COLLAR
 - 21.

Dan Collins, hereby certify that

drawings and design.

1. ALL WORK AND MATERIALS SHALL BE IN ACCORDANCE WITH THE CURRENT WSAA WATER SUPPLY CODE OF AUSTRALIA SPECIFICATIONS AND STANDARD - SOUTH EAST QUEENSLAND SERVICE PROVIDERS EDITION. UNLESS SPECIFIED OTHERWISE ALL MATERIALS AND WORK SHALL COMPLY WITH THE RELEVANT AUSTRALIAN

THE DESIGN HAS BEEN UNDERTAKEN TO COMPLY WITH CURRENT SOUTH EAST QUEENSLAND WATER CODE AND

THE CONSTRUCTION OF THE WATER RETICULATION WORK SHOWN ON THIS DRAWING MUST BE SUPERVISED BY AN ENGINEER WHO HAS RPEQ REGISTRATION. WORKS NOT COMPLYING WITH THIS REQUIREMENT WILL NOT BE PERMITTED TO CONNECT TO THE RETICULATION SYSTEM.

ALL MATERIALS USED IN THE WORKS SHALL COMPLY WITH URBAN UTILITIES ACCEPTED PRODUCTS AND MATERIALS LIST OR BE APPROPRIATELY SHOWN, LISTED AND DEFINED IN THE ENGINEERING SUBMISSION SO THAT THE ALTERNATIVE PRODUCT OR MATERIAL CAN BE ASSESSED AND IF APPROPRIATE, APPROVED BY

ADOPT LIP OF KERB OR SHOULDER OF ROAD AS PERMANENT LEVEL.

COVER ON MAINS FROM PERMANENT LEVEL TO BE AS SHOWN IN SEQ-WAT-1200-2.

CONSTRUCT EMBEDMENT AND TRENCH FILL TO SEQ-WAT-1200-1 TO 1204-1 AND COUNCIL STANDARDS FOR

PROVIDE BULKHEADS / TRENCH STOPS IN ACCORDANCE WITH SEQ WATER SUPPLY CODE TABLE 7.5 AND

10. CONSTRUCT THRUST BLOCKS ON ALL UNRESTRAINED VALVES, BENDS, TEES, TAPERS, DEAD ENDS TO

SEQ-WAT-1205-1, 1206-1 AND 1207-1 AND WHERE OTHER PIPES CONNECT TO PE PIPE

11. INSTALL DETECTABLE MARKER TAPE ON ALL WATER MAINS AND PROPERTY SERVICES

12. CONSTRUCT FIRE HYDRANTS AND STOP VALVES TO SEQ-WAT-1301-1, 1302-1, 1303-2, 1305-1, 1306-1 AND 1409-1. 13. CONSTRUCT SCOURS TO SEQ-WAT-1307-2 (ONLY MAINS DN315 AND LARGER). SCOURS MUST DISCHARGE INTO AN OPEN STORMWATER GULLY PIT. DISCHARGE TO THE FACE OF KERB AND CHANNEL IS NOT ACCEPTABLE TO

INSTALL ROAD AND PAVEMENT MARKERS TO SEQ-WAT-1107-1, 1107-2, 1300-1 AND 1300-2.

15. CONSTRUCT HYDRANTS AT THE ENDS OF ALL NEW MAINS BEFORE THE SCOUR AND WHERE REQUIRED FOR COMMISSIONING PURPOSES. URBAN UTILITIES PREFERENCE IS TO AVOID TAPPING BANDS FOR TEST POINTS AND PROVIDE EITHER A TEMPORARY DUCKFOOT HYDRANT OR FLANGED SHORT PIPE WITH A TEMPORARY TAPPED BLANK FLANGE. TESTING AGAINST LIVE MAINS AND VALVES IS NOT PERMITTED

16. TESTING LOCATIONS AND TEMPORARY FITTINGS ARE REQUIRED ON SERVICES OVER 10m LONG UNLESS APPROVED IN WRITING FOR WORKS TO BE UNDERTAKEN AS LIVE WORKS. TESTING AND AS -CONSTRUCTED

17. 316SS BACKING RINGS SHALL BE USED WITH FULL-FACE PE FLANGES. PE STUB-FLANGES ARE NOT ACCEPTED. WHEN JOINING TO EXISTING UNRESTRAINED PIPELINES, PROVIDE A DICL SHORT PIPE WITH THRUST FLANGE AND THRUST BLOCK. BOLT ON UNI FLANGES SHALL NOT BE USED AS THRUST FLANGES. THRUST (PUDDLE) FLANGES SHALL BE AN APPROVED PREFABRICATED DICL/MSCL SHORT PIPE WITH PREFABRICATED THRUST

18. ALL DISUSED SERVICES SHALL BE PLUGGED AT THE MAIN AND FERRULE CLOSED OR TAPPING BAND REMOVED AND SECTION OF MAIN SUBSTITUTED AS LIVE WORKS. LARGE DIAMETER SERVICES SHALL BE DISUSED BY REMOVING ANY PROPERTY SERVICE PIPEWORK AT THE POINT OF CONNECTION TO THE MAIN, AND INSTALLING

20. CONSTRUCT PROPERTY SERVICES TO SEQ-WAT-1107-1 AND 1107-3.

PROVIDE DN40 PE100 WATER SERVICES FOR ROAD CROSSINGS SERVICING TWO DWELLINGS. PROVIDE DN32 PE100 WATER SERVICES FOR ROAD CROSSINGS SERVICING A SINGLE DWELLING. IF THE LONG TERM STATIC HEAD OF THE PROPERTY SERVICE IS LESS THAN 350 kPA (35m) OR IF PRIVATE BOOSTER IS REQUIRED, THE MINIMUM SIZE OF PROPERTY SERVICE SHALL BE DN40 PE100.

22. WATER SERVICE UNDER ROADS MUST BE PLACED WITHIN 100mm DIA. CONDUITS, REFER SEW-WAT-1107-1. 23. A WATER METER SUPPLIED AT THE DEVELOPER'S COST, IS TO BE INSTALLED AT THE SERVICE POINT OF EACH LOT IN ACCORDANCE WITH THE URBAN UTILITIES STANDARD DRAWING.

24. WATER METER AND FIRE HYDRANTS MUST BE LOCATED MINIMUM 1.1m CLEAR OF ENERGEX PILLARS.

ENGINEER'S CERTIFICATION

The information contained in this drawing / document is in compliance with approv

The new water and sewerage works defined by this drawing have been designed an

constructed in accordance with the SEQ code

This generally represents an accurate record of as-constructed works

I accept responsibility for the information contained in this drawing / document.

O-C

RPEQ (signature) RPEQ No. 18631 Date: 04/04/25

RIATION SIGNED TO CONNECT INTO EXISTING TICAL CLEARANCE OF 1.00m

TIONS DEEPER THAN 1.5m TO ENSURE LOTS CAN BE RETICULATION SEWERS.

WOODLINKS

SEWERAGE AND WATER **RETICULATION GENERAL NOTES**

COLLINGWOOD DRIVE
COLLINGWOOD PARK

22-0175

301

REV	DATE	DESIGN	DRAWN	REVISION DETAILS	DRAWN	STATUS		SCALE	CLIENT	PROJECT N
2	20.06.24	CL	TR	ISSUED FOR CONSTRUCTION						
D	24.07.24	CL	CL	SEWER LIVE CONNECTION AMENDED		AS CONSTRUCTED			I CANBERRA ESTATES	
E	05.08.24	CL	CL	SEWER LIVE CONNECTION AMENDED						
3	04.04.25	CL	BP	AS CONSTRUCTED			I V Alliers I		I CONSORTIUM NO. 36 PTY LTD	
					DESIGN	APPROVED DATE				
					DEGIGIT	4.04.25				
						10120			ASSOCIATED CONSULTANT	1
									SAUNDERS HAVILL GROUP	
									DUI 1200 102 744	
									PTI: 1300 123 744	1

STRUCTURE NAME	1/1 HT	TP1/1 (HTP	2/1 2/1 (НТРЗ/1 НТ	P4/1 3/		W1)	5/1	5/1) (7/1	HTP5/1	ITP6/1	b/1	(HTP7/1)	HTP8/1	9/1	10/1 J	1/1
STRUCTURE TYPE & DRO	P × ଅ₽ ₽	R8.00 H L	ш қ	е R-7.75 Н е 90° н	SM	ИS-A	A M	VS-A	L NED	MS AS-A	₽ R-7.75 H	MS M	A-SN	₽ R-7.75 H	HTP MA	WS-A	NS-A	
STRUCTURE LID TYPE			m		۵	<u>ح</u>	a	n n					2			<u></u>	<u>ح</u>	
JUNCT. LINE No.			90° -90°			ო	-65°	90°	°06-								5	45°
JUNCT. DROP TYPES	٩		4		MS-A	4	A SM			MS-A		A-SM			▼ SW			
					·				J				Į					
DEPTH TO HC	1.31	1204 1204				1.13 1.27 1.27	147	1-200			1.33 1.33 1.33	124 128 128	1-1-0 1-2-0			133	123	1-32 1-32 1-37
HC INVERT LEVEL	30.24	0.17 0.152				31.79 1.6 64 31.74	30				31.10 31.123 31.102	31.00 30.86 30.86	<u>80.63</u>			22.01	93.04 9.03 9.03	35.11 5.000 5.000
HC TYPE	L L L L L L L L L L L L L L L L L L L	C C C C C C C C C C C C C C C C C C C				MS-B		C4			MS-B 4	2 C2					B2	B2 B2
HC LOT No.	53	532				534 535		538			233 240	541	244 243 244			242		
CH FROM DS STRUCTURE		<u>8.750</u>				0.00		0000			5.500	10.750	28.250			2.000	14.500	7.220
STRUCTURE TYPES G = CONCRETE 0.3000 F = CONCRETE 1.2000 X = CONCRETE 1.2000 MS = PE 0.6000 MH DROP TYPES: AS PER SEQ STD DRG SEQ-SEW-1301 SERIES MS = P750mm DROP THROUGH BULB MS= > 750mm DROP THROUGH BULB MS-B = > 750mm DROP THROUGH BULB B = NON-TRAFFICABLE D = TRAFFICABLE D = TRAFFICABLE D = TRAFFICABLE D(BD) = TRAFFICABLE WITH BOLT DOWN NOTE: PE LINING OF MAINTENANCE HOLES:	SMD 0375 CLR 1.798 WATER DN180 CLR 2.319		REPLACE EXI MH 569786 WI	STING TH NEW	-CLR 1.9275	WATER DH180	CLR 3.121 SWD 0375 CLR 2.578 WATER DN180	CtR 3.507	^^	I, E 1. 2. 3. 4. R I	E Dan Collins, her The information drawings and of The new water constructed in This generally I accept respor	NGINEEI eby certify that: n contained in thi design. and sewerage w accordance with represents an ac sibility for the info re) RPEQ N	R'S CERTIF s drawing / document i orks defined by this dr the SEQ code. curate record of as-coc mration contained in b. 18631 Date: 04/(ICATION is in compliance wi awing have been of nstructed works this drawing / docu	th approved designed and ment.			
MAINTENANCE HOLES ≥ 1500Ø IN DIA OR ≥ 4.0m IN DEPTH, REQUIRE PE LINED PROTECTIVE COATING # EMBEDMENT NOTE: PIPE EMBEDMENT & TRENCHFILL SHALL BE IN ACCORDANCE WITH SEQ-SEW-1200-2, 1201-1 TO 1201-5. TYPE 4 SUPPORT IS PROPOSED UNTIL FINAL GEOTECHNICAL INVESTIGATIONS ARE COMPLETED PRIOR TO CONSTRUCTION. * STORMWATER BIDGING NOTE: WHERE A STORMWATER PIPE >= 600mm DIA		+ + CONNECTION		/		×					××	 				*	×	TRENCHSTOPS T 10.0m SPACING
CROSSES OVER A SEWER, THE PIPE SHALL BE SUPPORTED BY A BRIDGE STRUCTURE THAT SPANS THE SEWER TRENCH. REFER COLLIERS STD DRG S-100.		ER LIVE WORKS	S C						<u>_</u>									
	23.0																	
LAND USE	ROAD	~							ROA	AD RESERVE								
	<			156.29		182.14	140.11	89.04	DN160) PE100 SDR21	182.30		97.54			.27.62		. 10,36
	- 1 IN 34.483 -	>< ^{1 IN 34.483}	= 1 IN 34.483 = 1 IN 1 =	75 1 IN 175 >	- 1 IN 175- 	< 11N 175-	< 1 IN 175	>< 1 IN 175 >	= 1 IN 17	5- <u>1 IN 175</u> TYPE 4	1 IN 175	 1 IN 175 >	<u>- 1 IN 100.000</u> -	1 IN 100.00	00 1 IN 100.000	- 1 IN 28.514		1 IN 10.526
	889		88			206		442									405	
JUNCTION INVERTILEVEL	83 83 83 83 83 83 83 83 83 83 83 83 83 8	515 8	7 4 66 7 4 2 8	8888	3 ∞ 8°	30. 30. 30.	454 v‡	37 37 37	\$8∞ (28 4 -	\$ 3	* * - *	80	<u>8</u> 8	<u>*</u> **	5 2 0 3 8	20 23	<u>9</u>
DEPTH TO INVERT	7 992 99 99 99 99 99 99 99 99 99		542 49 23 373 32 33 374 49 52 32	³⁶ ³⁷ ³⁸ ³⁸	329 329 329 329 329 329 329 329 329 329	4 0 4 4 0 2 6 0 2 6 0 2 7 6 0 2 7 6 0 2 7 6 0 2 7 6 0 2 7 6 0 2 7 6 0 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6 3.7 8 3.7 8 4.1	3 08 C 0 17 5 06 C 44 6 44 44 6 44 44	5 4 33	8 80 55 85 55 85	<u> </u>	<u>7</u> 77 07	589 589	59 59 88 89	\$2 \$2 \$ 3 \$2 \$7 \$2		7 72 72 75 75 75 75 75 75 75 75 75 75 75 75 75	57 57
SEWER INVERT LEVEL	26.8 27.86 27.86 27.86 27.86	202 80 14 22 80 14 22 80 14 22 80	58 33 58 58 58 58 58 58 58 58 58 58 58 58 58	28.45 28.45 28.45	28:4 28:4 28:5(286.6 28.5 28.5 28.5 28.5 28.5 28.5 28.5 28.5	28:7 28:6 28:7	28.7 28.7 29.0 29.0 29.0	29.0	2000 2000 2000 2000 2000 2000 2000 200	595 595	29:3 29:3 29:3 29:3 29:3	3 50 31 50 30 30 30 30 30 30 30 30 30 30 30 30 30	5 33.7	20 50 50 50 50 50 50 50 50 50 50 50 50 50	30.5 30.5 30.5	30.5 30.5 32.4	1 <u>32.4(</u>
DESIGN SURFACE LEVEL	31.46	31.38	31.49	31.25	31.13	31.15	32.43	32.88	33.43	32.718	32.70	32.39	32.32	31.78	32.15	32.18	33.086	34.66
EXISTING SURFACE LEVEL		30.61		30.19	30.082	31.17 31.17	32.40 32.40	35.614 32.90	33.673 33.43	31.673 32.71	31.408	32.747	32.31	32.484	32.404	32.17 32.17	33.06 33.06	36.083
SETOUT	E6593.761 N4086.503 F6583.804	E6582.243	N4090.979 E6581.721 N4091.317	E6589.458 N4103.284 E6587.157	N4114.000 E6586.317	N4114.543 E6563.958	N4128.999	N4136.260 N4136.260 E6534.881	N4147.797	E6547.776 N4167.742	E6548.319 N4168.582	E6546.018 N4179.298 E6541.400	N4182.284	E6505.709 N4205.359	E6494.993 N4203.058 F6494.450	N4202.218	E6474.481	N4171.331
RUNNING CHAINAGE	8. <u>10.620</u>	8 1.750 11.71	02 20 20 20 20 20 20 20 20 20 20 20 20 2	0 26.57 0 26.57 12.174	000.1 000.1 000.1	25.50 26.626	₩ <u>12.61</u> 13.374	20.48 21.250 21.250	99. 23.05 23.750		18.23 12.174	68 5.500	8 <u>42.500</u>	8 68 9 9 12.174	<u>1.000</u>	82 <u>16.57</u>	²⁹ 19.780	64.08 675 675 675 675 675 675 675 675 675 675
	LINE 1	<u> </u>	· 			-	-		7		<u></u>	¥		15	<u> </u>	Ŭ,	5	<u>5</u>
V DATE DESIGN DRAWN 20.06.24 CL TR ISSUED FOR CONSTRUCTED 24.07.24 CL CL LINE 1 AD 2 AMEND 06.08.24 CL CL DESIGN REVERTED T 04.04.25 CL BP AS CONSTRUCTED	REVISI RUCTION ED, STRUCTURE 1A/1 ADDI FO PREVOUIS REVISION (2)	ION DETAILS ED)		DRAWN ST.	ATUS AS PROVED	CONST	RUCTED	DATE 4.04.25	С	olli	ers	SCALE 1:1000 10 1:2000 1 1:100 2 1:200 1	0 10 20 30 HORIZONTAL 1 0 2 VERTICAL	40 50 A1 A3 4 A1 A3	CLIENT CON ASSOCIATED O	CANBER SORTIUN SOULTANT SAUNDERS	RA ESTAT	ES TY LTD

STRUCTURE NAME	4/1 HTP	1/3 (HTP2/	/3 1/3				2/3 (6	5/1	(E/4) (2/EX2)	(HTP1/	6 (HTP	2/6 1/	/6					2/6	E
STRUCTURE TYPE & DROP	A HTP	R-6.00 H	<u>ل</u>			SM	A-SI ×	L NED	DN		dT	R-11.75 H	WS					SW	A-SI	DN
STRUCTURE LID TYPE	<u>ــــــــــــــــــــــــــــــــــــ</u>	25' 1	۵				 			ш		/2° ±								
JUNCT. LINE No.	_		°06				-				÷									
JUNCT. DROP TYPES <	۲		۲			A-SM												MS-A		
DEPTH TO HC	1400			1,32		1.02 1.02	1.41 500	132	1.24 1.200	143	1.200			1 <mark>1283</mark>	1,200	1.46	1.32	1,280		1.11 1.200
HC INVERT LEVEL	11.25		8888		89 <u>9</u>	- 0 <u>9</u>	28	2.895	44 98 98 98	10 10 10 10 10 10 10 10 10 10 10 10 10 1	11.132			1420 1491	5.37	20 <u>98</u>	86.77 86.77 87.57	7.507		8.54 9.262
HC TYPE	24 		B 33	50 an	8 8		6 С	B2	82	8 	B2					1 <u>800</u>	<u>8</u>	B2 3	83 83	B2
HC LOT No.	33		25	24	- - 81 8		8	37	36	12	13			4 	15	16	17	8	<u>6</u>	20
CH FROM DS STRUCTURE	665 5		150 5	1150 5	2.150 5 		000	150 5	1.750 5	000	.000			1344	5.924 5	5.924 5	5.924 5	9.424 5		000 5
STRUCTURE TYPES			37	<u> </u>	<u>3 [</u> 		ö	7	-10		EN(GINEER	'S CERT							16
G = CONCRETE 0.9000 F = CONCRETE 1.2000 X = CONCRETE 1.2000										I, Dan 1 Th	Collins, hereby	certify that:	Irawing / docur	nent is in compliance	with approved					
MS = PE 0.600Ø MH DROP TYPES:			l i							dra 2 Th	wings and desig	gn. 1 sewerage wor	ks defined by t	his drawing have bee	en designed and	ļ				
AS PER SEQ STD DRG SEQ-SEW-1301 SERIES MS DROP TYPES:										COI 3 Thi	structed in acco	ordance with the	e SEQ code.	as-constructed works						
MS-A = 20mm DROP THROUGH BULB MS-B = >750mm DROP INTO RISER			l i				*			4. la	cept responsibi	lity for the inform	mation containe	ed in this drawing / de	ocument.	ļ				
LID TYPES B = NON-TRAFFICABLE					£	ţ_/					0		2						F	>
D = TRAFFICABLE D(BD) = TRAFFICABLE WITH BOLT DOWN					X					RPEC	(signature)	RPEQ №.	18631 Date	: 04/04/25	1		<u> </u>	-¥	×	
NOTE: PE LINING OF MAINTENANCE HOLES:		~~~~~	\												+	- + - - *	· *			
4.0m IN DEPTH, REQUIRE PE LINED PROTECTIVE COATING				-						- 1 TRENC	HSTOPS									
# EMBEDMENT NOTE:										li		>		_ / ×		0				
PIPE EMBEDMENT & TRENCHFILL SHALL BE IN ACCORDANCE WITH SEQ-SEW-1200-2,								L.		<u>↓</u> ~	~ # *									
1201-1 TO 1201-5. TYPE 4 SUPPORT IS PROPOSED UNTIL FINAL GEOTECHNICAL										+ ×	$\overline{\star}$		\downarrow	4						
TO CONSTRUCTION.			-	3 TR	ENCHSTOPS		_						-		6 TRENO	CHSTOPS				
* <u>STORMWATER BRIDGING NOTE:</u> WHERE A STORMWATER PIPE >= 600mm DIA				AT 14	4.0m SPACING							NNECTION 2			AT 14.0m	1 SPACING				
CROSSES OVER A SEWER, THE PIPE SHALL BE SUPPORTED BY A BRIDGE STRUCTURE											REFER L TABLE F	IVE WORKS								
COLLIERS STD DRG S-100.													, <i>C</i>							
DATUM RL(m)	24.0						-	22.0		26.0										
LAND USE			ALLOTMEN	Т			-	ROAD RES	ERVE	-					RC	DAD RESERVE				>
PIPE DIA & TYPE	<	34.37	DN160 PE100 S	SDR21	14.52		-		0 SDR21	<		94.91			DN1	160 PE100 SDR2	1		64.8	
	1 IN 33.333 	1 IN 33.333 - 1	1 IN 33.333		1 IN 14.288		-	< 1 IN 10.9	332 >	< 41	N 99.404	1 IN 99.404	1 IN 99.404 < >	<		1 IN 14.694		>	1 IN 59	.378
	×					•	4	<	- * >	<						TIFL4				>
JUNCTION INVERT LEVEL		, 	- 10 40			da	6 31.4	ub.	4	do do	du du	du -	uh da	ф.,					•	do
DEPTH TO INVERT	5.0 1.44 1.57		2:96 1.67			2.11	4.43	1.95	2.02	4 4 1 1 1 1 1 1 1 1 1 1 1		2 	2.34 2.34	2:33				+	1. 1. 96:1-	+
SEWER INVERT LEVEL	<u>30.96</u> 30.96 31.024	31.022 31.103 31.103 31.103	31.93 31.93 31.93 33.20 33.20			36.67 36.67	29.00 28.974	31.445 31.48	33.06 33.249	31.31 31.297 31.31 31.31	31.456 31.456	31.607	31.60 31.65 31.657	31.67 31.67				37.17 37.198	37.216 37.20	37.45 37.496
DESIGN SURFACE LEVEL	32.435	32.595 32.650	34.900				38.700	33.437	36 200	32.815	33.033		33.892	34.056					39.182	
EXISTING SURFACE LEVEL	32.582 32.40	34.792 35.148	34.89 34.89				<u>37.678</u> 38.78	33.673 33.43	24 787	35.08 32.815	<u>33.673</u>		33.869	33.754 33.99					38.467 39.19	
	28.999 28.999 50.643	26.925 58.786 25.096	43.684			062.00	29.509 34.881	47.797	24.158	21.212	45.296 10.672	40.372	53.747 37.853	55.376				39.475	99.584	55.618
SEIOUI	E 65	E65	E65			E65I	N411 E65	N41	E65	E65	E65- N40-	E65	N40	N40				E64	N40	E64
RUNNING CHAINAGE	80. <u>3.910</u>	016 <u>2.627</u> 9	27.815 SE		50.39 51.150		85.502	000 18.95 00 19.75	10 750	000.0	15.845 12.845	32.27 14.962	30 807	33.807		81.06 81.424			112:232	2 30 -
LINE NUMBER	LINE 3							LINE 4		LII	NE 6									
DATE DESIGN DRAWN 20.06.24 CL TR ISSUED FOR CONSTRUCTION	REVISION DETA	ILS		DRAWN	STATUS		107-					SCALE	10 10 0	10 20 20 **	0 50 44	CLIENT			<u> </u>	PROJEC
04.04.25 CL BP AS CONSTRUCTED					AS	CONSTRU	JCTEI		\mathbf{C}	\mathbf{a}	ier	1:100		HORIZONTAL	u 50 A1		SORTIUM N	IESTATES	S LTD	
				DESIGN	APPROVED			DATE 4.04.25				1:10 1:20	0 2 1	0 2	4 A1 A3	ASSOCIATED CC				-
														. LITTORE			SAUNDERS HA PH: 1300	VILL GROUP		

REV

WATER FITTINGS LEGEND

PROPOSED:	
FH	FIRE HYDRANT
x	ISOLATION VALVE
x	WATER SERVICE POINT
EXISTING:	
	FIRE HYDRANT
w	ISOLATION VALVE
w]	DEAD END
$-\!\!-\!\!w-\!\!\!\rightarrow-\!\!w-\!\!-\!\!-\!\!$	REDUCER
x	WATER SERVICE POINT
AS CONSTRUCTED	LEGEND
	WATER PIPE
	TAPPING BAND
<u> </u>	VALVE
—	FIRE HYDRANT
	WATER METER

EXISTING GAS MAIN

NOTE: WATER MAINS MUST CROSS OVER SERVICES WITH MINIMUM COVER PER SEQ CI. 7.4.2. AND CLEARANCES PER SEQ CODE TABLE 5.5. ALL VALVES TO BE FULLY RESTRAINED IN ACCORDANCE WITH THE SEQ CODE. MARKERS FOR PROPERTY SERVICES SHALL BE IN ACCORDANCE WITH SEQ-WAT-1106-1108. MARKERS FOR WATER MAIN CROSSINGS, HYDRANTS AND VALVES SHALL BE IN ACCORDANCE WITH SEQ-WAT-1300-1. **RP DESCRIPTION** LOT 5007 ON SP 317659 DATUM LEVEL AND LOCATION: P.S.M. 110122 RL 40.320 AHD URBAN UTILITIES REF. NUMBER. : 22-PNT-63740 WATER RETICULATION LAYOUT WOODLINKS PLAN COLLINGWOOD DRIVE 22-0175 306 3 COLLINGWOOD PARK

REV	DATE	DESIGN	DRAWN	REVISION DETAILS	DRAWN	STATUS			SCALE	CLIENT	PRO
2	20.06.24	CL CL	TR BP	ISSUED FOR CONSTRUCTION AS CONSTRUCTED			AS CONSTRUCTED	\sim 11		CANBERRA ESTATES	l l
							AUCONONCOLED	Colliere	1:500 10 5 0 10 20 A1		l l
_	_				DESIGN	APPROVED	DATE		1:1000 A3	CONSORTION NO. 301 TT ETD	i i
							4.04.25				1
										SAUNDERS HAVILL GROUP PH: 1300 123 744	1

22-0175

